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A B S T R A C T   

Drought is a devastating natural hazard posing great threats to agriculture. Identifying the spatial pattern of 
agricultural sensitivity to drought can provide scientific information for decision-makers to prepare droughts, 
allocate resources, and mitigate impacts. Here, we use long-term state- and county-level crop data for the 10 major 
crops: corn grain, soybeans, hay, spring wheat, winter wheat, cotton, corn silage, sorghum, barley, and rice in the 
United States from 1950 to 2016. First, we perform a correlation analysis between crop yield anomalies and two 
drought indices (Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized Precipitation Index 
(SPI)) to identify the sub-seasonal pattern of agricultural sensitivity to drought stress. SPEI performs better than 
SPI. For most crops, the sensitivity to drought increases in the early period, peaks at the critical months, and then 
declines. July is the most critical month for crop growth for most crops. Among all crops, soybean and corn grain 
are most sensitive to drought. Second, we develop an Agriculture Drought Sensitivity Index (ADSI) to quantita
tively measure the sensitivity of agriculture to drought stress based on the statistical relationship between the ten 
major crops and SPEI. We demonstrate that there exists a very strong spatial correspondence between higher 
sensitivity to drought and the lower percentage of acres irrigated, and vice versa. Also, for those regions with 
limited irrigation, the sensitivity is higher in arid/semi-arid regions and lower in humid regions in summer. Third, 
given the importance of irrigation, an analysis of covariance (ANCOVA) shows that the irrigated crop yields have 
much higher long-run mean yields than non-irrigated crop yields. Fourth, to investigate how irrigation affects 
drought sensitivity, a panel data regression model shows that the responses of crop growth to drought are non- 
linear for all crops. Non-irrigated crops are more sensitive to droughts than the irrigated crops, particularly in 
severe drought conditions. This provides quantitative incentive to use irrigation as an important adaptation and 
coping strategy to mitigate the drought impacts on agriculture in the US.   

1. Introduction 

Drought is a very devastating and costly natural disaster. From 1980 to 
2017, droughts caused extensive losses in the United States ($239.1B CPI- 
adjusted economic losses) accounting for roughly 15.3% of total losses 
from weather and climate disasters (NOAA, 2016). Future drought risks 
and impacts can be exacerbated by climate change (AMS, 2013;  
IPCC, 2013). The agricultural sector is the first sector affected by drought 
since drought can reduce soil-water availability, contribute to crop failure 
and pasture losses, reduce crop yield, and threaten food security. Agri
cultural drought is defined as linking meteorological drought character
istics to agricultural impacts, associating precipitation shortages most 
immediately with higher evapotranspiration levels and soil moisture 

deficits (AMS, 2013). Agricultural drought usually occurs at the critical 
time during the growing season, resulting in declining soil moisture and 
crop failure (Heim, 2002). Drought also can affect livestock industries by 
compromising forage (e.g. hay or corn silage) supply and quality. 

Drought impacts on agriculture depend on its intensity, severity, 
duration and timing relative to crop growth stages (Kramer and 
Boyer, 1995). In addition, drought events with similar intensity and 
duration could have different impacts on agriculture depending on the 
eco-physiology of the crops and the local adaptive capacity of the 
system (e.g. management strategies or irrigation facilities). The IPCC 
Third Assessment Reports (Working Group II: Impacts, Adaptation, and 
Vulnerability) defined sensitivity as “the degree to which a system is 
affected, either adversely or beneficially, by climate-related stimuli” 
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(IPCC, 2001). Here, we similarly define the sensitivity of agriculture to 
drought as the degree to which the agricultural system is affected, ei
ther adversely or beneficially by drought. Mapping the spatial pattern 
of the sensitivity of agriculture to drought at the local level can provide 
objective information with respect to which agricultural areas are most 
vulnerable and sensitive to droughts, which is key to decision-makers 
and policymakers for preparing drought, allocating resources, and mi
tigating risks. However, there are few studies measuring and assessing 
the sensitivity of agriculture to drought quantitatively and spatially at 
the local county level over the whole US, across multiple crop types, 
and over the long term. In addition, irrigation is an important adapta
tion strategy to mitigate the drought risks to agriculture. Agricultural 
drought affects both irrigated and rain-fed crop, but with differing ef
fects (AMS, 2013). However, studies empirically estimating and com
paring the differing effects of drought on the sensitivities of irrigated 
and non-irrigated agriculture are rare. 

There have been great scientific efforts in developing and using 
drought indices to assess the drought condition and impacts for better 
decision making. The Palmer Drought Severity Index (PDSI) 
(Palmer, 1965) and its variations: the Palmer Z index (Palmer, 1965), 
Palmer Hydrologic Drought Index (PHDI) (Palmer, 1965), and Palmer 
Modified Drought Index (PMDI) (Heddinghaus and Sabol, 1991) have 
been extensively used for drought monitoring and related operational 
water management decision making. The Standardized Precipitation 
Index (SPI) developed by McKee et al. (1993) is based on a standardized 
transformation of the historical probability of precipitation, showing 
some advantages over PDSI, such as simple calculation, spatially in
variant in interpretation, and flexible time scale (Guttman, 1998,  
1999). The main issue associated with SPI is that its calculation is only 
based on precipitation, ignoring the effects of temperature in drought 
assessments. Adopting the standardizing methods used in SPI, Vicente- 
Serrano et al. (2010) developed Standardized Precipitation Evapo
transpiration Index (SPEI) by incorporating evaporative demand into its 
calculation and the multiscalar nature of SPI. Both SPI and SPEI allow 
users to determine the rarity and severity of drought events at any time 
scale of interest (1-month, 3-month, 6-month, 12-month etc.). 

Given the significant impacts of drought on agriculture, there have 
been great endeavors in connecting drought to agriculture. Different 
types of drought indices have been widely used to evaluate the drought 
impacts on agriculture. Quiring and Papakryiakou (2003) evaluated the 
performance of the four drought indices to predict the spring wheat 
yield for the 43 crop districts on the Canadian prairies.  
Mavromatis (2006) evaluated the performance of the drought indices to 
assess the impact of droughts and climate change on wheat and durum 
wheat yield for two crop district in Greece. Sun et al. (2012) used 
various drought indices to assess the drought impacts on spring wheat 
yields in Canada. Zipper et al. (2016) used SPEI to estimate the spa
tiotemporal patterns of drought effects on maize and soybean yield at 
the county level in the US. Matiu et al. (2017) evaluated the interaction 
between temperature and drought on affecting global and regional crop 
yield using SPEI. Tian et al. (2018) evaluated the performance of six 
drought indices to monitor agricultural drought in the south-central US.  
Peña-Gallardo et al. (2019) analyzed the response of barley, winter 
wheat, soybean, corn and cotton yield to drought using SPEI. SPEI has 
been widely used since its development and was found to have a su
perior capability than uniscalar drought indices (e.g., PDSI and its 
variations) to capture the drought impacts on the agriculture (Peña- 
Gallardo et al., 2019; Tian et al., 2018; Vicente-Serrano et al., 2012). 
SPEI has also been found to be the most representative of soil moisture 

conditions, which is critical for crop growth (Tian et al., 2018). Most 
importantly, the multiscalar nature of SPI and SPEI shows advantage to 
allow identification of a single month or consecutive months critical for 
crop growth, while by contrast, PDSI has an inherent fixed-time-scale of 
about 9–12 months (Guttman, 1998). 

This study is a purely data-driven empirical study, relying on the 
actual historical yield losses resulted from the actual field inputs, irri
gation, management strategies, and environmental and climate varia
tions, instead of experimental design controlling the environmental 
conditions, or expert subjective ranking, or qualitative data. We use 
high-resolution gridded SPI and SPEI to characterize the drought in
tensity and severity and cover 10 major crops accounting for more than 
95% of the total crop harvested areas to represent US agriculture. A 
sophisticated data self-adaptive detrending approach is applied to au
tomatically separate out the high frequency fluctuations caused by 
weather and climate factors from the non-linear and non-stationary 
increasing trend caused mainly by science and technological advances 
(Lobell and Field, 2007; Najafi et al., 2018) in crop yield time series for 
thousands of counties, dozens of states, and ten major crop types 
(Lu et al., 2017). The non-linear and non-stationary feature of crop 
yield time series and the detrending process are demonstrated in Fig. 1. 
The non-linear and non-stationary nature of the yield time series is 
neglected by many studies, which could bias estimates of the re
lationship between climate variability and yields. We construct a sta
tistical relationship between crop yield anomalies and drought index to 
estimate the sensitivity of agriculture to droughts and consider sub- 
seasonal drought variability, rather than mean conditions for the entire 
growing season as typical of most previous studies, since the sensitivity 
of agriculture varies across the growing seasons. The time series data 
from 1950 to 2016 used in this study for each county or state in
trinsically consider the adaptive capacity of the agricultural system 
(e.g., whether having irrigation infrastructure) and the farmers’ year-to- 
year adaptation to unfavorable conditions (e.g., whether applying extra 
irrigation to mitigate the risks during extreme dry and hot periods) 
(Lobell et al., 2011). 

Here, we provide a quantitative sensitivity assessment to measure 
the spatial pattern of sensitivity to drought in the agricultural sector at 
the local county level in the US. To the best of our knowledge, there has 
been no empirical assessment on the sensitivity of agriculture to 
drought based on more than 60 years of crop statistics, 3108 counties, 
48 states, and 10 major crop types accounting for more than 95% of the 
harvested areas in the US. We develop an Agriculture Drought 
Sensitivity Index (ADSI) to quantitatively measure the sensitivity of 
agriculture in response to drought stress. Since irrigation plays an im
portant role in drought mitigation, we use an analysis of covariance 
(ANCOVA) model and a panel data regression model to quantitatively 
estimate the effects of irrigation in boosting crop yield and reducing the 
susceptibility of agriculture to drought. This study can provide a gen
eral guidance for irrigation management for the ten major crops, sci
entific and spatial information for allocating resources and preparing 
drought, as well as quantitative incentives for irrigation infrastructure 
investment to boost crop yield and mitigate drought risks. 

2. Data and methodology 

2.1. Agricultural data 

The state-level and county-level crop statistics (production, har
vested areas, and yield) from 1950 to 2016 were downloaded from the 
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web-based Quick Stats tool provided by USDA's National Agricultural 
Statistics Service (NASS) (USDA, 2017). We used 48 states and 3108 
counties in the conterminous US. We chose the top ten major field 
crops, including corn grain, soybeans, hay, spring wheat, winter wheat, 
cotton (Pima and upland), corn silage, sorghum, barley, and rice, which 
account for more than 95% of the total crop harvested areas in the US, 
according to 2012 Census of Agriculture (USDA, 2014). USDA's NASS 
separated statistics of hay into Alfalfa hay and other hay (clover-ti
mothy mixtures, bermuda grass, prairie hay, etc.), separated statistics of 
cotton into Pima cotton and upland cotton, and separated spring wheat 
into spring durum wheat and other spring wheat (exclude spring durum 
wheat). NASS calculated the crop yield as crop production divided by 
harvested areas. Here, we calculated the cotton yield as the total pro
duction of Pima cotton and upland cotton divided by the total harvested 
area of Pima cotton and upland cotton and did the same to calculate the 
yield of hay and spring wheat. Our analysis separated wheat into spring 
wheat and winter wheat because of their different growing seasons. 
Barley mainly indicates spring barley. For each crop type, we only in
cluded counties with at least 30-year data. Majority of the crop statistics 
from USDA's NASS do not separately account for irrigated vs. non-ir
rigated fields. The irrigated vs. non-irrigated crop statistics are only 
available in a part of US covering a short period, which will be used in 
panel data regression model to investigate the effect of irrigation on the 
sensitivity of agriculture to drought. 

2.2. Gridded standardized precipitation index (SPI) and standardized 
precipitation evapotranspiration index (SPEI) 

We calculated gridded SPI and SPEI in the US using the high-re
solution 4-km PRISM (Parameter-elevation Relationships on 
Independent Slopes Model) precipitation and temperature dataset (Daly 
et al., 2008) from 1895 to 2016. We followed the method of  
McKee et al. (1993) to calculate SPI and we follow the method of  
Vicente-Serrano et al. (2010) to calculate SPEI. SPI and SPEI are cal
culated on a grid-by-grid basis. The SPI is based on only precipitation 
data and the SPEI is based on the monthly difference between pre
cipitation (PPT) and potential evapotranspiration (PET) representing a 
simple climatic water balance. The SPEI calculation is similar to SPI. 
For each grid, we calculated potential evapotranspiration (PET) fol
lowing the methods of Thornthwaite (1948) and a simple Thornthwaite 
PET calculation method was chosen due to the same reasons as stated in  
Vicente-Serrano et al. (2010). We then calculated the monthly differ
ence between PPT and PET and accumulated the monthly difference 
into different time scales: 1-month, 2-month, 3-month, 6-month, 9- 
month, 12-month, and 24-month. We fitted a three-parameter log-lo
gistic distribution (two-parameter Gamma Distribution for SPI) using 
the maximum likelihood estimation (MLE) method (McKee et al., 1993;  
Vicente-Serrano et al., 2010). The probabilities of PPT minus PET va
lues were then transformed into the quantile of standard Gaussian 
distribution (normal distribution) with mean of 0 and standard devia
tion of 1 using an inverse Gaussian distribution function. The trans
formed variate is the SPEI. The value of SPEI represents the number of 
standard deviation of PPT minus PET from the mean, usually called Z- 
score. Following McKee et al. (1993), for both SPI and SPEI, we define 
the drought categories as: 0 to −0.99 (mild drought), −1.00 to −1.49 
(moderate drought), −1.50 to −1.99 (severe drought), and ≤ −2.00 
(extreme drought). 

Since we used a 4-km high-resolution gridded PRISM dataset to 

compute gridded SPEI and SPI for multiple time scales across the entire 
conterminous US from 1895 to 2016, instead of multiple weather sta
tions, we used a High Performance Computing (HPC) system. This 
parallel and cloud computing system allows us to distribute different 
time scales and different parts of US into multiple computing nodes and 
shorten total computing time. We then calculated the county-level and 
state-level mean for the SPEI and SPI values using an area-weighted 
mean by the cosine of the latitudes. 

2.3. Crop yield anomaly 

We used county-level and state-level long-term crop yield data for 
the ten major crop types from 1950 to 2016 in the US. The long-term 
crop yield data are influenced by many factors that the long-term 
nonlinear and nonstationary increasing trend are caused by science and 
technological advances and the high-frequency fluctuation super
imposed on the trend are mainly caused by the weather and climate 
variations (Lu et al., 2017). We followed the method of Lu et al. (2017) 
to detrend the long-term crop yield data, using a data self-adaptive 
detrending method: locally weighted regression model (LOWESS, with 
1 degree of freedom) coupled with a multiplicative decomposition 
model to separate out the weather and climate signals from the long- 
term nonlinear increasing trend caused by the technological advances 
(Lu et al., 2017). We calculated the county-level and state-level crop 
yield anomalies for those ten major crop types, which can represent the 
percentage of crop yield higher or lower than the normal yield condi
tions. 

2.4. Statistical analysis between crop yield anomalies and drought indices 

We performed a correlation analysis between the crop yield 
anomalies and SPI/SPEI of different time scales (1-month, 2-month, 3- 
month, 6-month, 9-month, 12-month, and 24-month) in different 
months during the growing seasons. The growing seasons for each crop 
type are based on USDA's NASS (USDA, 2010). According to the 
Pearson correlation coefficients, we identified the best time scales of 
SPI/SPEI and the most critical months that droughts can severely affect 
the crop growth. We also compared the performance of SPI and SPEI to 
correlate with the crop yield anomalies. We then performed a simple 
linear regression analysis between crop yield anomalies (dependent 
variable) and the corresponding best drought indices (independent 
variable) to calculate the slope. Here, we constrained our analysis only 
to the dry end of SPI and SPEI range (i.e., SPI < 1 and SPEI <1) in the 
correlation analysis and slope calculation because lower than normal 
crop yield can be caused by flooding and excessive wetness, rather than 
droughts, which could lead to non-linearity. Correlation analysis and 
slope calculation are only applicable to linear relationship. We also 
excluded the counties that have less than or equal to two drought events 
(moderate drought or worse; SPI ≤ −1 and SPEI ≤ −1) measured by 
the corresponding best drought indices for each crop from 1950 to 2016 
because it would be not reasonable to calculate drought sensitivity for 
counties without drought events. 

2.5. Agriculture drought sensitivity index (ADSI) 

We developed an Agriculture Drought Sensitivity Index (ADSI) to 
quantitatively measure the sensitivity of agriculture in response to 
drought. The sensitivity of crops to drought is defined as the slope of the 
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linear regression between the crop yield anomalies and the corre
sponding best drought index (Samuel et al., 2016; Vicente-Serrano 
et al., 2013). The slope indicates the change in the mean value of crop 
yield anomalies associated with a one-unit change in the drought index. 
A steeper and positive slope means that the crop yield anomalies are 
lower during severer drought years. We calculated the ADSI as the 
harvested-area weighted slope for each county or state. The ADSI is 
based on all crop types that are planted for each unit. Higher ADSI 
value indicates higher sensitivity and lower resilience, which means 
that the crop losses are highly associated with droughts, and vice versa. 
The county-level and state-level ADSI is defined as follows: 

= =

=

ADSI
SLP A

A
i

c c i c i

c c i

1
10

, ,

1
10

,

Where i represents each county or state; c represents the crop type; 
SLPc,i represents the slope of the linear regression between crop yield 
anomalies of crop type c and the corresponding drought indices of the 
best time scale during the most critical month in county or state i; Ac,i 

represents the harvested areas of crop type c in county or state i. 
This sensitivity index uses a variety of crop types in the US and takes 

the importance of the specific crop for each state and each county into 
consideration. The weighting procedure decreases the weights of the 
least planted crops and increases the weights of the dominant planted 
crops. Here, the ADSI is a relative measurement for sensitivity in the 
US. We fitted empirical cumulative distribution functions (ECDF) for 
the state-level and county-level ADSI, respectively, since the county- 
level and state-level crop data are measured in two different spatial 
scales. We divided ADSI into five categories and categorized the first 
quintile to the fifth quintile respectively as highest sensitivity, medium- 
high sensitivity, medium sensitivity, medium-low sensitivity, and 
lowest sensitivity, i.e., the counties in each category account for 20% of 
the total counties. 

2.6. Panel data regression model 

To investigate the effect of irrigation on the sensitivity of agriculture 
to drought, we built a panel data regression model for each crop. A 
panel data model combines time series models and cross-section 
models, considering both interannual and spatial variations 
(Lobell et al., 2011). We used fixed effects model to include county- 
specific fixed effect to account for county by county differences in 
omitted variables (e.g. soil quality) and county-specific linear trend 
(year as the predictors) to account for county by county differences in 
science and technological changes. 

The data on irrigated and non-irrigated crop yield for those crop 
types were also obtained from USDA's NASS (USDA, 2017). The irri
gated vs. non-irrigated crop yields data from USDA's NASS only cover a 
part of US. There are no irrigated vs. non-irrigated data for rice since all 
rice is irrigated. Hence, rice was excluded from this analysis. We in
cluded all counties with at least 10-year irrigated data and 10-year non- 
irrigated data. The numbers of counties are shown in Table 1. Since we 
do not have more detailed information, we cannot exclude the effects of 
other factors influencing crop yield, such as fertilization, crop man
agement, or cultivar. The effect of irrigation is often coincident with 
crop management and fertilization. We will compare the absolute yields 
for irrigated crops vs. non-irrigated crops, and so we didn't detrend the 
irrigated yield and non-irrigated yields in the panel data regression 

model. Also, since the mean length of the irrigated and non-irrigated 
crop time series are only about 30 years and not in long-term, we 
parameterize the trend using only linear term, instead of higher-degree 
polynomials. We used the raw yields data instead of yield anomalies 
and built a panel data regression model for each crop. 

We transformed raw crop yields into natural log yields because 
yields follow a log-normal distribution (Lobell et al., 2011) and yield 
fluctuations generally increase over time as the yields increase 
(Lu et al., 2017). Log-transformed yields are more normally distributed 
than the raw yields (Lobell et al., 2011). SPEI performs better than SPI 
to correlate with crop yield anomalies (Fig. 2(a)) and here we used SPEI 
as the drought index in the panel data regression model. We included 
the full range of SPEI values here since we have already considered non- 
linearity in the panel data regression model. We estimated a panel data 
regression model (fixed effects model) for each crop as the following 
form: 

= + + + +Log Y T SPEI SPEI( ) * * *i t g i g i g g i t g i t i t g, , , , ,
2

, , ,

Where i indicates county, t indicates the time, and g indicates irri
gated or non-irrigated. Yi, t, g is the raw irrigated or non-irrigated crop 
yield for county i and year t. T is year. SPEIi, tis the corresponding best 
SPEI for the specific crop for county i and year t. SPEI2i, t is the quadratic 
term of SPEIi, t. We included the quadratic term of SPEI since we hy
pothesize that drought stress might pose a non-linear effect on the crop 
growth. ɛi, t, g is the error term. αi, g is the county fixed effect for irri
gated or non-irrigated crop which can capture the county by county 
time-invariant differences (e.g., soil conditions) and irrigated vs. non- 
irrigated differences. βi, g is the coefficient of county-specific and irri
gated vs. non-irrigated specific linear time trend. The time trend can 
capture the differing rates in technological changes for irrigated and 
non-irrigated crop among different counties. θg and δg are the para
meters of interest, which can identify the differing effects (linear and 
quadratic) of drought on irrigated and non-irrigated crops. 

3. Results 

3.1. Crop yield anomalies 

The shapes of the crop time series vary state by state and county by 
county. The long-term soybean yield time series in Illinois is linear and 
the winter wheat time series in California is non-linear and non-sta
tionary in which the long-term increasing trend is mainly caused by 
science and technological advances and high-frequency fluctuations are 
mainly caused by weather and climate variations (Fig. 1). Thus, we 
detrended the long-term crop yield data following the method of  
Lu et al. (2017). The soybean yield anomalies in Illinois show a very 
strong linear correlation with the SPEI (p-value <0.001), while the 
winter wheat in California does not show a significant correlation with 
the drought index (p-value = 0.875). The Illinois also has a steeper 
slope between crop yield anomalies and the SPEI than the California. A 
one-unit decrease in August 2-month SPEI leads to a 11.2% decrease in 
soybean yield in Illinois, while a one-unit decrease in May 3-month 
SPEI does not lead to a decrease in winter wheat yield in California. 

From the historical statistical relationship between crop yield 
anomalies and SPEI, here we consider that the soybean in Illinois is 
more sensitive to drought than the winter wheat in California. 
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3.2. Statistical analysis between crop yield anomalies and SPEI/SPI 

We performed correlation analyses between crop yield anomalies 
and SPEI/SPI of different time scales at different months during the 
growing seasons across the ten crops, over 48 states, and 3108 counties. 
We have identified the best time scale of SPEI/SPI and the most critical 
month for each crop that shows the highest average correlation with the 
crop yield anomalies based on both county-level and state-level corre
lation analysis. 

The critical months and best time scale identified here are from an 
overall national-wide, not a local, perspective. The growing season and 
the timing of growing stages for each crop differ region by region, for 
example, for the same crop, the crop planting time for Texas is earlier 

than the crop planting time in North Dakota because of thermal time 
differences. Fig. 2(a) shows the averaged Pearson correlation coeffi
cients between the crop yield anomalies and the corresponding best 
SPEI/SPI at the critical month. We found that SPEI shows higher cor
relation with crop yield anomalies than SPI for most of the crops (ex
cept hay and winter wheat) (Fig. 2(a)) since evapotranspiration play an 
important role in affecting crop growth. Thus, SPEI is used as the 
drought indicator for the following analysis. 

Fig. 2(b) shows the Pearson correlation coefficients between the 
crop yield anomalies and 1-month SPEI at different months, which can 
show the sub-seasonal change of sensitivity to drought stress and help 
to identify the single month that the crops are most sensitive to 
drought. The results show that the sensitivity of crop growth to drought 

Fig. 1. The first two rows are detrending the soybean yield in Illinois and winter wheat yield in California using locally weighted regression model (LOWESS) coupled 
with multiplicative decomposition model; The third row is the scatterplots between crop yield anomalies and the corresponding best Standardized Precipitation 
Evapotranspiration Index (SPEI) for soybean in Illinois and winter wheat in California. 
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is not homogenous across the growing season (Fig. 2(b)). Most of the 
crops are especially sensitive to drought stress in July. Fig. 3 shows the 
spatial pattern of county-level slope of linear regression between crop 
yield anomalies and the corresponding best SPEI, and the state-level 
map is included in the supplementary material (Fig. S1). 

The historical empirical relationship between crop yield anomalies 
and drought indices show that soybean, corn grain, hay, sorghum, and 
corn silage are more sensitive to drought stress than spring wheat, 
cotton, barley, rice, and winter wheat (Fig. 2(a)). 

Among all crops, soybean is most sensitive to drought stress 
(Fig. 2(a)). Soybean shows the highest correlation with 2-month SPEI in 
August among all SPEIs, which is calculated from July and August 
precipitation and temperature. Fig. 2(b) shows that both July and Au
gust are the critical months for soybean growth. These two months 
correspond to the reproductive stages of soybean: flowering, pod de
velopment, and seed filling stages. Soybean yield is least sensitive to 
drought stress during the vegetative stage, more sensitive during 
flowering and pod development, and most sensitive during seed filling 
stage (Eck et al., 1987; Shaw and Laing, 1966; Sionit and 
Kramer, 1977). Drought stress occurring during pod development and 
seed filling stages can lead to reduced number of pods, reduced number 
of seeds per pod, reduced seed size, and hence reduced yield potential 
(Kranz and Specht, 2012; Sionit and Kramer, 1977). 

Corn grain shows the highest correlation with 2-month SPEI in July 
calculated from June and July precipitation and temperature; corn si
lage shows the highest correlation with 1-month SPEI in July calculated 

from only July precipitation and temperature. The seasonal curve of 
corn grain and corn silage are very similar since they are the same crop 
type (Fig. 2(b)). July is the most critical month during the growing 
season for both corn grain and corn silage since 1-month SPEI in July 
shows the highest correlation among all 1-month SPEI. July approxi
mately corresponds to the early reproductive stage (tasseling, silking, 
and pollination) in most states, in which droughts can desiccate the 
silks and pollen grains and influence the pollination process, resulting 
in the greatest yield reduction (Burglund et al., 2010; Kranz et al., 
2008). 

Here, hay is a combination of Alfalfa hay and other hay (clover- 
timothy mixtures, bermuda grass, prairie hay, etc.). Also, hay is a 
perennial crop which is harvested several times throughout the year 
depending on farmers’ choice, and thus the critical time identified here 
does not correspond to any specific growing stage of hay. Hay shows 
the highest correlation with 3-month SPEI in July, which is calculated 
from May, June, and July precipitation and temperature (Fig. 2(a)).  
Fig. 2(b) shows that all those three months are critical for hay yields. 
Among various physical factors (droughts, diseases, salinity, freezing, 
and insects) limiting hay yield, drought is the most important 
(Bin Abd. Halim, 1986) and drought stress can reduce leaf size, stem 
extension, and root proliferation (Defez et al., 2017). Bin Abd. Halim 
(1986) shows that drought stress occurring during vegetative stage do 
not significantly affect the quality of alfalfa, while drought stress oc
curring during the bud and flowering stages can result in lower total- 
herbage in-vitro digestible dry-matter and crude-protein (CP) 

Fig. 2. a) Averaged Pearson correlation coefficients between crop yield anomalies and the corresponding best SPEI/SPI at the critical month; b) Averaged Pearson 
correlation coefficients between crop yield anomalies and 1-month SPEI at different months during the growing seasons. 
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concentration because of leaf wilting and leaf losses. 
Sorghum shows the highest correlation with 1-month SPEI in July 

among all SPEIs. Sorghum is most sensitive to drought stress during the 
reproductive stages (boot stage to flowering), in which drought can stop 
the development of pollen and ovules, prevent fertilization, and cause 
abortion of fertilized ovules (Assefa et al., 2010; Eck and Musick, 1979). 
This stage is approximately in July in most states. 

Cotton shows the highest correlation with 2-month SPEI in August 
(Fig 2(a)), which is calculated from July and August precipitation and 
temperature, and July is the most critical month for cotton growth 
(Fig. 2(b)). Previous literature show that cotton is most sensitive to 
drought stress during the reproductive stages, from first square to peak 
bloom, in which drought can reduce the number of bolls and number of 
seeds set in the boll, resulting in substantial yield losses (Loka et al., 
2011, 2012). The reproductive stages approximately occur in July. 
Compared with other crops, cotton is a perennial woody shrub with an 
indeterminate growth habit. Cotton becomes dormant during the period 
of drought and resumes growth with favorable rainfall, which makes 
cotton somewhat tolerant to drought stress (Loka et al., 2011, 2012). 

Barley shows the highest correlation with 2-month SPEI in July 
(Fig. 2(a)). Both June and July are the most critical month for barley 
growth (Fig. 2(b)). Barley is most sensitive to drought stress during or 

near the flowering stage (Wells and Dubetz, 1966), in which drought 
stress can influence the pollination process and significantly reduce the 
number of kernels produced per head (Robertson and Stark, 2003). 

Rice is not highly correlated with SPEI in any month during the 
growing seasons as other crops (Fig. 2) since rice is a water-intensive 
crop and the growth of rice requires extensive irrigation. Rice planting 
is always associated with extensive irrigation. 

Overall, winter wheat is not significantly correlated with drought 
indices as spring wheat (Fig. 2). Part of the reason is because winter 
wheat is planted across the whole US, while spring wheat is planted in 
limited areas in the US, mostly in arid regions (Fig. 3). Winter wheat is 
highly correlated with drought indices in the arid areas where there is 
little irrigation (Fig. 3 and Fig. 4(b-c)). The correlation between winter 
wheat and SPEI is weak in the humid areas east of US as well as in the 
dry areas with irrigations in the west of US (Fig. 3 and Fig. 4(b-c)). For 
wheat, drought and heat stress during stem elongation and booting 
stage can increase the rate of tiller mortality and the stress prior to flag 
leaf appearance can cause spikelet loses and florets abortions, and 
hence reduce yield potential (Fowler, 2002). For winter wheat, these 
stages approximately occur in April (Knott, 2016). For spring wheat, 
these stages come later, and June is the most critical month for spring 
wheat growth (Fig. 2(b)). 

Fig. 3. County-level slope of linear regression between crop yield anomalies and the corresponding best Standardized Precipitation Evapotranspiration Index (SPEI).  
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3.3. Agricultural drought sensitivity index (ADSI) 

The state-level ADSI is included in supplementary material (Fig. S2) 
and the county-level ADSI is shown in Fig. 4(a). The SPEIs used in ADSI 
for each crop are the SPEI that shows the highest correlation with the 
crop yield anomalies (Fig. 2(a)). The counties in blank indicate counties 
that none of the 10 major crop data are longer than 30 years or none of 
the 10 major crops are planted and harvested in those counties. The 
ADSI calculated here is based on the yields for both irrigated and non- 
irrigated crops, that can reflect both eco-physiological response of crops 
to drought and the local farmers’ adaptations to the drought stress. 

We also calculated the county-level percentage of acres irrigated as 
the mean total acres irrigated in 1985, 1990, 1995, 2000, 2005, and 
2010 divided by the mean harvested acres from 1985 to 2010 for those 
ten major crops (Fig. 4(b)). The county-level data of total acres irrigated 
in 1985, 1990, 1995, 2000, 2005, and 2010 are downloaded from the 
U.S. Geological Survey's National Water-Use Science Project (Hutson 
et al., 2004; Kenny et al., 2009; Maupin et al., 2014). The cases where 
the total acres irrigated exceeding total harvested acres were truncated 
to 1. We used June, July, and August precipitation (Fig. 4(c)) as a re
ference for humid and arid climate for crop growth since those are the 
most critical months for most crop growth, except for winter wheat. 

We find a very strong correspondence between the lower percentage 
of acres irrigated and the higher sensitivity, and vice versa (Fig. 4). This 
indicates that effective irrigation can reduce the sensitivity of agri
culture to drought. This can also partially indicate the effectiveness and 
usefulness of our methodology to evaluate the sensitivity. Overall, the 
spatial pattern of county-level ADSI shows that the eastern parts of US 

are more sensitive to drought and the western parts of US are less 
sensitive to drought because extensive irrigations are used in the west 
(Fig. 4). 

The spatial pattern of county-level ADSI also partially reflect the 
spatial pattern of humid and arid climate in summer. For those regions 
with limited irrigation, the sensitivity of agriculture to drought is high 
in arid/semi-arid regions and low in humid regions. For example, 
Minnesota and Iowa are less sensitive to drought than Montana, North 
Dakota, and South Dakota because Minnesota and Iowa are much 
wetter in summer (June, July, and August) (Fig. 4). This result con
forms to previous findings that the correlation between NDVI and 
drought indices is high in arid and semi-arid regions and the correlation 
is low in humid regions (Lotsch et al., 2003; Lu et al., 2019). Our 
finding is also consistent to a research that the linkage between crop 
yield and drought severity is weaker in humid environment than arid 
environment (Peña-Gallardo et al., 2019). 

3.4. Effects of irrigation on crops’ sensitivity to drought 

Given the close relationship between sensitivity and irrigation, we 
quantitatively estimate the effect of irrigation on the sensitivity of 
agriculture to drought. We performed an analysis of covariance 
(ANCOVA) to compare the long-run mean for irrigated and non-irri
gated crop yield by statistically controlling the effects of other covari
ates: time trend and drought effects for those counties with both irri
gated and non-irrigated crop yield data (Table 1). ANCOVA is a general 
linear model integrating analysis of variance (ANOVA) and regression 
(Cochran, 1957; Ott and Longnecker, 2008). For all crops, the linear 

Fig. 4. a) County-level Agriculture Drought Sensitivity Index (ADSI); b) County-level percentage of acres irrigated; c) Average summer (June, July, and August) 
precipitation from 1950 to 2016. 
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trend across irrigation and non-irrigation effects and across counties are 
not equal (Type III F test, p-value <0.0001). Thus, we estimate the 
long-run mean crop yield by adjusting the covariates of year to 2000 
and the SPEI value to 0, for example, the long-run mean irrigated barley 
yield is 3893 kg/ha and long-run mean non-irrigated barley yield is 
2013 kg/ha in 2000 under normal weather condition (adjusting the 
corresponding SPEI value to 0) (Table 1). 

For all crops, there is a very strong evidence (Type III F test, P-value 
<0.0001) that the long-run mean of the irrigated crop yield is not equal 
to non-irrigated crop yield. With 95% confidence, for example, the 
long-run mean irrigated soybean yield is at least 68% and at most 76% 
higher than the non-irrigated soybean yield adjusting to the year 2000 
and normal weather condition. Thus, irrigation plays an important role 
in boosting the crop yield, with the highest increases for spring wheat 
(147%), hay (139%), corn silage (132%), and corn grain (124%), and 
the lowest increases for cotton (64%), sorghum (70%), and soybean 
(72%) (Table 1). 

From the fitting results of the panel data regression model, we have 
detected that the responses of the crop to drought are non-linear for all 
crops that the coefficients of the quadratic term of SPEI are all sig
nificant at 0.0001 level except hay (p-value <0.01) (Table 2). We also 
calculated the optimum SPEI for irrigated and non-irrigated crop 
growth for each crop. We find that the optimum SPEIs for irrigated 
crops are obviously lower than the non-irrigated crops for most crops, 
i.e., the irrigated crops require less natural rainfall to achieve optimum 
crop yields because of irrigation supplements. 

We show that the responses of crops to drought are non-linear by 
calculating the percentage change of crop yield with the change in SPEI 
under different SPEI bases (Table 3). For different SPEI bases, change in 
one-unit SPEI value (i.e., one standard deviation of PPT minus PET 
amounts) will result in different percentage change in crop yield. One- 
unit decrease in SPEI in drought conditions (e.g., SPEI=−2) will result 
in a larger reduction in crop yield than in wetness conditions (e.g. 
SPEI=2) (Table 3). Considering only the physiological responses of 
agriculture to drought, for the non-irrigated crops, corn grain, cotton, 
soybean, corn silage, sorghum, and barley are more sensitive to drought 
than spring wheat, hay, and winter wheat (Table 3). 

The results also show that the non-irrigated crop is more sensi
tive to drought than the irrigated crop (Table 3) and effective irri
gation can mitigate crop losses to drought. In drought conditions, 
the same decrease in SPEI on the same SPEI basis will result in larger 
crop yield reduction for non-irrigated crop than the irrigated crop, 
for example, one-unit decrease in SPEI when SPEI base value is −2 
will result in 30.55% reduction in yields for non-irrigated soybean 
and only 10.19% reduction for irrigated soybean (Table 3). One-unit 
decrease in SPEI when SPEI base value is −2 will result in ap
proximately 18% more damage to non-irrigated barley than irri
gated barley, 30% to corn grain, 13% to corn silage, 15% to sor
ghum, 20% to soybean, 8% to hay, 18% to cotton, 12% to spring 
wheat, and 5% to winter wheat. The irrigation benefits corn grain 
and soybean the most among all crops when in severe drought 
conditions. 

4. Conclusion and implication 

This study identifies single or consecutive months that the ten 
major crops are most sensitive to drought stress based on the his
torical empirical relationship between crop yield anomalies and 
drought indices. The SPEI performs better than the SPI to correlate 
with crop yield anomalies for most crops (Fig. 2a). Our results show 
that soybean, corn grain, hay, sorghum, and corn silage are more 
highly correlated with drought intensity than spring wheat, cotton, 
barley, rice, and winter wheat. We have also identified the sub-sea
sonal pattern of sensitivity to drought during the growing season for 
the ten major crops in the US (Fig. 2b). Our findings on the critical 
months for crop growth conform to the phenological and Ta
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physiological pattern of crop growth from previous field experiments 
and literature. July is the most critical month for crop growth for 
most crops since July corresponds closely to the reproductive stage of 
the crops (flowering and pollination). Drought stress occurring 
during the reproductive stage can severely reduce the crop yields. 
The sensitivity of agriculture to drought increases in the early period, 
peaks at the critical months, and then declines (Fig. 2(b)). Our 
findings can provide a general guidance for farmers to schedule 
which months are the best timing to irrigate, especially for the dry 
areas with limited access to fresh water. The specific accurate irri
gation amounts and timing depends on local planting time, crop 
types, crop growing stages, actual rainfall, and local accessibility to 
fresh water. 

This study develops an Agriculture Drought Sensitivity Index 
(ADSI) to map the sensitivity of agriculture in response to drought at 
the local county-level in the US. We find a very strong spatial cor
respondence between the degree of sensitivity and the percentage of 
acres irrigated, i.e., the higher percentage of acres irrigated corre
sponds to the lower sensitivity and the lower percentage of acres 
irrigated corresponds to the higher sensitivity (Fig. 4). Our findings 
highlight the significance of irrigation on drought risks mitigation 
and adaptation. In addition to the irrigation, we also demonstrate 
that the spatial pattern of county-level ADSI partially reflects the 
spatial pattern of humid and arid climate in summer: for the regions 
with limited irrigation, the sensitivity of agriculture to drought is 
high in arid/semi-arid regions and the sensitivity is low in humid 
regions (Fig. 4). The spatial pattern of sensitivity can provide sci
entific information for policymakers and decision makers on which 
areas are the priority to allocate recourses and make investments in 
irrigation to mitigate the unfavorable drought conditions, 

particularly for the regions with few irrigations and in the arid/semi- 
arid climate. 

This study also quantitatively estimates the benefits of irrigation, 
both from the absolute increase in crop yield and stability of crop yields 
in response to drought stress, which can provide quantitative incentives 
for future investments in irrigation and related infrastructure as an 
adaptation strategy to cope with drought. Irrigation plays a very im
portant role in boosting the crop yield by ensuring adequate water in 
root zone to meet crop water needs consistently, with the highest in
creases for spring wheat (147%), hay (139%), and corn silage (132%), 
and the lowest increases for cotton (64%), sorghum (70%), and soybean 
(72%) (Table 1). The panel data model shows that the responses of 
crops to drought are non-linear for all crops, no matter for irrigated or 
non-irrigated crop (Table 2). For different SPEI bases, change in one- 
unit SPEI value will result in different percentage change in crop yield, 
for example, one-unit decrease in SPEI in drought conditions will result 
in larger reductions in crop yield than in wetness conditions (Table 3). 
The irrigated crops require less natural rainfall to achieve maximum 
growth than the non-irrigated crops because of irrigation supplements 
(Table 2). The irrigation can provide sustained and consistent water use 
for crops and stabilize the crop yield since the droughts could occur at 
any growing stage with varying duration and severity. The irrigated 
crops are not highly dependent on the weather and climate variations. 
The fitting model results also show that the non-irrigated crops are 
more sensitive to drought than the irrigated crop, especially in severe 
drought conditions, for example, one-unit decrease in SPEI (base value: 
−2) can result in approximately 18% more damage to non-irrigated 
barley than irrigated barley, 30% to corn grain, 13% to corn silage, 15% 
to sorghum, 20% to soybean, 8% to hay, 18% to cotton, 12% to spring 
wheat, and 5% to winter wheat. This can provide quantitative evidence 

Table 2 
Fitting results of panel data model (fixed effects model).             

Barley Corn Grain Corn Silage Sorghum Soybean Hay Cotton Wheat, Spring Wheat, Winter  

SPEI coefficients (Irrigated) 0.0359*** 0.0136*** 0.0217*** 0.0442*** 0.0010 0.0373*** 0.0440*** 0.0262*** 0.0104*** 
SPEI2 coefficients (Irrigated) −0.0171*** −0.0340*** −0.0329*** −0.0237*** −0.0213*** −0.0061* −0.0291*** −0.0093*** −0.0166*** 
SPEI coefficients (Non-Irrigated) 0.1495*** 0.1818*** 0.1436*** 0.1495*** 0.1214*** 0.0824*** 0.1287*** 0.1153*** 0.0391*** 
SPEI2 coefficients (Non-Irrigated) −0.0407*** −0.0884*** −0.0437*** −0.0422*** −0.0486*** −0.0140*** −0.0603*** −0.0196*** −0.0222*** 
R square 0.83 0.88 0.85 0.80 0.75 0.84 0.77 0.84 0.79 
Optimum SPEI (Irrigated) 1.0472 0.2005 0.3291 0.9315 0.0246 3.0385 0.7560 1.4152 0.3143 
Optimum SPEI (Non-Irrigated) 1.8348 1.0280 1.6435 1.7701 1.2482 2.9499 1.0664 2.9427 0.8809 

Note: *** indicates significance level at 0.0001, ** indicates 0.001, and * indicates 0.01.  

Table 3 
Predicted percentage change in crop yield with the change in SPEI using panel data regression models (fixed effects model).               

SPEI value bases Change in SPEI Percentage change in crop yield 
Barley Corn Grain Corn Silage Sorghum Soybean Hay Cotton Wheat, Spring Wheat, Winter  

Irrigated 2 +1 −4.85% −14.47% −13.31% −7.17% −10.00% 0.66% −9.66% −1.99% −6.99% 
−1 1.56% 9.23% 8.01% 2.73% 6.48% −1.87% 4.43% 0.16% 4.01% 

1 +1 −1.54% −8.45% −7.42% −2.66% −6.09% 1.91% −4.24% −0.16% −3.86% 
−1 −1.86% 2.06% 1.13% −2.03% 2.04% −3.07% −1.48% −1.68% 0.62% 

0 +1 1.89% −2.01% −1.12% 2.07% −2.00% 3.16% 1.50% 1.71% −0.61% 
−1 −5.16% −4.65% −5.31% −6.57% −2.21% −4.25% −7.05% −3.49% −2.66% 

−1 +1 5.44% 4.88% 5.61% 7.03% 2.26% 4.44% 7.59% 3.61% 2.74% 
−1 −8.35% −10.91% −11.34% −10.90% −6.28% −5.42% −12.31% −5.26% −5.84% 

−2 +1 9.12% 12.25% 12.79% 12.23% 6.70% 5.73% 14.04% 5.55% 6.20% 
−1 −11.44% −16.77% −16.99% −15.03% −10.19% −6.57% −17.27% −7.00% −8.91% 

Non-irrigated 2 +1 −5.28% −22.93% −7.21% −5.98% −11.46% 1.26% −15.89% 1.75% −6.94% 
−1 −2.69% 8.71% −1.25% −2.26% 2.48% −3.97% 5.37% −5.50% 2.79% 

1 +1 2.77% −8.01% 1.26% 2.31% −2.42% 4.13% −5.10% 5.82% −2.71% 
−1 −10.31% −8.92% −9.51% −10.17% −7.02% −6.61% −6.61% −9.13% −1.68% 

0 +1 11.49% 9.79% 10.51% 11.33% 7.55% 7.08% 7.07% 10.04% 1.71% 
−1 −17.33% −23.68% −17.08% −17.45% −15.64% −9.19% −17.22% −12.62% −5.95% 

−1 +1 20.96% 31.04% 20.60% 21.14% 18.53% 10.11% 20.80% 14.44% 6.33% 
−1 −23.80% −36.06% −24.02% −24.14% −23.45% −11.69% −26.63% −15.98% −10.04% 

−2 +1 31.23% 56.39% 31.61% 31.82% 30.64% 13.23% 36.30% 19.02% 11.16% 
−1 −29.76% −46.43% −30.37% −30.29% −30.55% −14.12% −34.97% −19.21% −13.95% 
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and incentive to use irrigation as an effective adaptation strategy to 
mitigate the effects of drought stress on agriculture. 
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