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A near real-time flood-mapping approach by integrating social media and
post-event satellite imagery
Xiao Huang, Cuizhen Wang and Zhenlong Li

Department of Geography, University of South Carolina, Columbia, SC, USA

ABSTRACT
Rapid flood mapping is critical for timely damage assessment and post-event recovery support.
Remote sensing provides spatially explicit information for the mapping process, but its real-time
imagery is often not available due to bad weather conditions during the event. Using the 2015
South Carolina Flood in downtown Columbia as a case study, this article proposes a novel
approach to retrieve near real-time flood probability map by integrating the post-event remote
sensing data with the real-time volunteered geographic information (VGI). Relying on each VGI
point, an inverse distance weighted height filter was introduced to build a probability index
distribution (PID) layer from the high-resolution digital elevation model (DEM) data. For each PID
layer, a Gaussian kernel was developed to extract its moisture weight from the normalized
difference water index (NDWI) of an EO-1 Advanced Land Imager (ALI) image. Finally, a normal-
ized flood probability map was produced by chaining the moisture weighted PIDs in a Python
environment. Results indicate that, by adding the wetness information from post-event satellite
observations, the proposed model could provide near real-time flood probability distribution
with real-time social media, which is of great importance for emergency responders to quickly
identify areas in need of immediate attention.
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Introduction

Flood is one of the most common natural hazards on
terrestrial lands. A flood often occurs as an overflow of
water from water bodies like lakes and rivers during
extreme weather events (Ashley and Ashley 2008).
Globally, one-third of the annual natural disasters and
economic losses and more than half of victims are
flood-induced (Douben 2006). Floods also cast long-
term impacts via indirect damages such as human
health, personal properties, public infrastructure, water
quality, and ecosystems (Messner and Meyer 2006;
Adhikari et al. 2010).

Flood assessment is able to reconstruct the damage
zone and evaluate the losses, rendering valuable sug-
gestions for policy makers (Rasid, Haider, and Hunt
2000; Kulkarni et al. 2014). Flood mapping, an impor-
tant aspect of flood assessment, provides better situa-
tion awareness for the public and quickly draws
attention to certain areas where immediate actions are
needed. Numerous studies have been conducted to
generate flood inundation maps for emergency respon-
ders, which could roughly break into two categories:
hydrological modeling (Yin et al. 2015; Chen, Hill, and

Urbano 2009; Stefanidis and Stathis 2013; Di Baldassarre
et al. 2010) and remote sensing (Qiao et al. 2012;
Palacios-Orueta et al. 2006).

Hydrological modeling for flood mapping (mostly for
prediction purposes) has witnessed up-surging interests
in past decades. However, it has always been criticized
to be site specific, which requires detailed landscape-
based inputs and careful parametric calibration
(Efstratiadis and Koutsoyiannis 2010). In addition, their
results are greatly dependent on spatial scales and
land-use/cover characteristics, which increase the
model uncertainties and make them difficult to be
generalized (Blöschl and Sivapalan 1995; Renard et al.
2010).

Remote sensing has long been used to monitor flood
coverage and its dynamic development. A variety of
approaches have been developed for deriving rainfall
(Villarini et al. 2010), acquiring soil wetness and soil
saturation (Njoku and Entekhabi 1996), mapping poten-
tial inundation areas (Townsend and Walsh 1998), and
assessing flood damage (Van Der Sande, De Jong, and
De Roo 2003). Multispectral images have been utilized
for extracting the characteristics of hydrological sur-
faces, including topography, soil saturation status, and
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delineation of flooding zones (Tralli et al. 2005;
Davranche, Poulin, and Lefebvre 2013). As an example
of spectral ratioing of multispectral images, the normal-
ized difference water index (NDWI) has been exten-
sively used as an indicator of soil wetness and an
effective approach to delineating water boundaries
and flood-prone areas (Mallinis et al. 2013; Ho, Umitsu,
and Yamaguchi 2010; Jain et al. 2005; McFeeters 1996).
The NDWI is a widely used water index calculated as a
spectral ratio between green and shortwave-infrared
(SWIR) bands (Gao 1996). However, limited temporal
resolution due to a satellite’s long revisit cycle and
heavy cloud cover during a flood event have hindered
remote sensing application in real-time flooding
analysis.

More recently, volunteered geographical information
(VGI) (Goodchild 2007) is being utilized in flood studies.
As a most popular open source social media, Twitter is a
perfect representation of public concern. Temporally and
spatially referenced pictures and videos from Twitter have
become popular during flood events (Palen et al. 2010).
Other VGI sources including street closures, traffic cameras,
photos, and videos can also be used to fuse multiple layers
for a comprehensive understanding purpose (Schnebele
and Waters 2014; Schnebele et al. 2014). Compared with
traditional data sources such as remote sensing imagery,
VGI provides an opportunity to tackle the real-time or near
real-time problemswhen remote sensing fails to collect the
timely data. Emerging as a new data source collected and
distributed by non-authoritative individuals, VGI provides a
much cheaper, less labor-involved approach for us to col-
lect timely information (Poser and Dransch 2010; Triglav-
Čekada and Radovan 2013). However, the reliability and
confidence level associated with VGI have been criticized
due to the lack of verification (Schnebele andWaters 2014).

VGI from social media such as Twitter in flood assess-
ment is still in its early stage (Herfort et al. 2014, 2015;
Horita et al. 2013, 2015). More recently, Li et al. (2018)
introduced a novel approach to mapping the flood
probability distribution together with stream gauges
and digital elevation model (DEM), in which the tweet
density of all flood-related tweets was used to assign
the confidence level at each VGI. Other weighting
methods were also included based on the confidence
of data source and the format of tweets (Whether text-
based, picture-based, or video-based). However, simply
overlaying different data sources, especially VGI data
with biased distribution, might be problematic. One
limitation, for example, is that the high density of VGI
distribution does not necessary mean the high prob-
ability of the flood occurrence. In some occasions, a
dense VGI distribution simply means high population
in this area. Although it could be normalized with the

density distributions of all tweets in an area, tweets
posts are always spatially clustered, which introduces
high uncertainties to flood mapping in areas with no or
very limited tweets points.

To compensate the limitation above, we propose a
remote sensing based weighting scheme by assigning
the confidence levels at VGI points using the spatial
information extracted from remote sensing data. The
contribution of this study includes: 1) combining the
post-event satellite imagery with VGI for a more com-
prehensive rapid flood mapping; and 2) developing a
kernel-based weighting algorithm to assign different
confidence levels at the VGI points based on the
NDWI distributions in the post-event image. In this
way, a more spatially continuous, near real-time flood
probability distribution is extracted during a flood
event. The remainder of the article is organized as
follows: Section 2 briefly describes the study area and
datasets. Section 3 describes the methodology in detail.
Section 4 describes the model outputs and performs
the comparison analysis with the USGS inundation map.
Finally, conclusions are in the section 5.

Study area and datasets

Study area

A severe flood occurred in 2015 in South Carolina due
to consecutively intense precipitation on October 1st –
5th from Hurricane Joaquin. This study selects the City
of Columbia as our study area (Figure 1). It is located in
Richland and Lexington Counties in the central part of
South Carolina. Congaree River, joined by Saluda River
and Broad River in the north, is the largest flowing
water bodies in its metropolitan area. The 2015 Flood
in Columbia reached a 1000-year event level, whereas
other areas of the state reached a 500-year level
(Feaster, Shelton, and Robbins 2015; Musser et al.
2016). As shown in Figure 1, the study area covers
majority of the city and is located in the upstream of
the Congaree River Watershed. The 2015 SC Flood
caused severe damage to public infrastructures, houses,
and personal properties of this urban watershed (Li
et al. 2018).

Datasets

Satellite imagery during the peak flood event was not
available in the study area due to heavy cloud covers.
The earliest cloud-free image was acquired from the
EO-1 Advanced Land Imager (ALI) on 8 October 2015,
3 days after the peak flood (as shown in Figure 1). It has
30-m resolution in multispectral bands. Functional haze
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removal in the ATCOR2 module of Erdas/Imagine was
applied, and atmospheric correction was performed to
convert digital numbers of the ALI image to surface
reflectance.

Twitter data during the 2015 SC Flood were ana-
lysed. For each tweet posting the flood incident, its
posting time and geographic location (latitude and
longitude) were extracted, which renders valuable
temporal and spatial information of this incident. In
previous studies, our research team has generated a
tweets pool containing 1,279,325 tweets with exact
longitude and latitude using Twitter Stream API and
REST API (Li et al. 2018). A keyword matching algo-
rithm was then applied to further select flood-related
tweets, which were manually checked to sort out
those whose content (text, picture or both) matched
well with their coordinates (pictures were checked
through Google Earth). Among hundreds of tweets
in our research area that passed the spatial restraint
and keywords restraint, 18 tweets were verified to be
flood related, posted in research area during the peak
flooding dates of Oct. 3–4, and their contents

matched well with their longitude and latitude.
Their locations (Figure 2(a)) were used in this study
to represent the flooded conditions at these
locations.

More official data about the 2015 SC Flood were
released after the event. In this study, the flash flood
data points, representing locations under flash flood,
were downloaded from the National Weather Service
(NWS) and National Oceanic and Atmospheric
Administration (NOAA) (http://www.nws.noaa.gov/gis/
shapepage.htm). According to the metadata, this data-
set contains 23 flash flood points across the study area,
all reported on Oct. 4th when intensive rainfall hap-
pened (Figure 2(b)). Both tweets and flash flood data
points were used in this study. For the convenience of
description, both of them are named VGI points in the
remaining sections.

Other data utilized in this study include the 3-m DEM
downloaded from South Carolina Department Natural
Resources (http://www.dnr.sc.gov/GIS/lidar.html). Also,
the official survey-based flood inundation map, pub-
lished in February 2016, was downloaded from the U.

Figure 1. The study area in the City of Columbia and Congree River Watershed, SC. The ALI image (acquired 10/08/2015) is
displayed in a standard false color.

Figure 2. Spatial distributions of verified flood-related tweets (a) and official flash flood points (b).
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S. Geological Survey (USGS) flood inundation mapping
(FIM) program (https://water.usgs.gov/osw/flood_inun
dation). It provides an authoritative flood extent,
which serves as the reference data to evaluate our
model performance.

Methodology

The method of the study is designed in four steps
(Figure 3). First, with a single VGI point, an IDW-
implemented Height Filter was introduced to create
a probability index distribution (PID) layer, which
represent a single estimation (merely based on this
VGI point) of areas being flooded. After that, the
NDWI was extracted from the surface reflectance of
the ALI image. For each PID layer, a Gaussian-kernel
distance-decay approach was developed to calculate
a NDWI-curved moisture weight of this layer. A flood
probability model was finally developed to produce
an integrated flood probability map (FPM) of the
study area. The performance of the model was eval-
uated by comparing the model results with the
Official USGS inundation map.

VGI points: IDW-implemented probability index
distributions (PIDs)

Assume we have a location i that is flooded (VGI
point) and location j that is a random location in the
same area. We believe that, as the elevation of j
increases, location j is less likely to be flooded. In
addition, the Tobler’s Law indicates that closer objects
have stronger connections. In this case, the flooding
probability is assumed to be negatively correlated with
the distance between i and j, i.e., a location closer to
the flooded location has a higher chance of being
flooded than those further away. Based on a flooded
VGI location i, the differential height (DH) at location j
is defined as:

DHj ¼ 0; Hi � Hj < 0
Hi � Hj; Hi � Hj � 0

�
(1)

where Hi and Hj represent the elevation of location i
and j, respectively. DHij denotes either 0 when Hi<Hj or
the potential height difference between the two points
when Hi � Hj.

Adopting the inverse distance weighting method in
Li et al. (2018), given a flooded VGI location i, the IDW-
implemented PIDs at a random location j is calculated:

Figure 3. Flowchart of the methodological design.
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PIDij ¼ DHij
� �α � 1

dij
� �β (2)

where dij represents the Euclidean distance between
location i and j. α and β are power parameters to adjust
the influence of DHij and dij, respectively. Both α and β

are set to 1 for simplification (Li et al. 2018).
Figure 4 illustrates the idea of the IDW-implemen-

ted height filter for a given VGI point. The solid curve
line represents the actual elevation, the horizontal
dashed line is the water surface derived from
Location i, and the area filled with blue represents
the area below location i. The flood possibility within
this area is weighted using the distance decay func-
tion in Equation (2). Each VGI point provides an inde-
pendent, single-estimation PID layer for the whole
study area.

NDWI and VGI-centered Gaussian kernel

People who live close to a flood incident tend to post
more flood-related information on social media.
However, this very spatial characteristic of tweets chal-
lenges a simple yet common assumption that locations:
higher flood-related tweets density suggest higher pos-
sibility of being flooded. Actually, more flood-related
tweets in an area does not necessarily mean a higher
flood possibility. Rather, it may simply come from a
high density of Twitter users (De Albuquerque et al.
2015). To reduce the intrinsic uncertainties due to
their strong correlation to population density, this
study constructs the weight of VGI points from the
satellite-extracted surface wetness variations, i.e. a
higher weight is given to a VGI point if the satellite-
extracted wetness around this area is also higher.

The NDWI is adopted to indicate ground wetness in
the study area and is calculated as (Gao 1996):

NDWI ¼ ρgreen � ρSWIR

ρgreen � ρSWIR
(3)

where ρgreen and ρSWIR are surface reflectance of green
and SWIR bands, respectively. NDWI is positively related
to land surface wetness. Cells with higher NDWI repre-
sent moister conditions. Water bodies have the highest
NDWI and could be easily delineated. To facilitate
future calculation and interpretation, we rescaled it to
a range of [0, 2000] by multiplying the original NDWI
with 1000 and adding a constant of 1000.

The ALI image was acquired on Oct. 8th, 3 days
after the peak flooding event. We assume that the
image-extracted ground wetness conditions still posi-
tively reflect the real-time, VGI-posted floods within
the 3-day lag. Here, a Gaussian kernel weighting
algorithm was developed to aggregate the NDWI of
all pixels in the kernel centered at a VGI point. The
NDWI influence is gradually weaker when a pixel is
further away from the VGI point. Compared with
traditional inverse distance decay function, the
Gaussian kernel we used results in a smoother dis-
tance decay effect. A smoother distance decay effect
is less sensitive to locational discrepancy as it
accounts for the wetness dynamics surrounding a
VGI, thus greatly compensating the common concern
of VGI’s inaccurate geolocation.

Similarly, given the location i of a VGI point that
was flooded, location j represents a random pixel
within the kernel. We assume the following state-
ments to be true:

● Location j with higher NDWI has a higher chance
to be flooded, and that with lower NDWI has a
lower chance;

● For location j closer to the VGI point i, its NDWI
contributes more to the flood incident posted in
this area.

Figure 4. Illustration of variables used in Equations (1) and (2).
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Figure 5 demonstrates the idea of overlapping the
Gaussian surface to the NDWI surface. For a VGI point
ix; iy
� �

centered at the kernel, the moisture weight to its
PID layer can be defined as:

W ix; iy
� � ¼

ðð

jx ;jyð Þ2R
G jx; jy
� �

NDWI jx; jy
� �

djxdjy (4)

where location jx; jy
� �

is a random pixel in the kernel,
and NDWI jx; jy

� �
denotes its NDWI value. G jx; jy

� �
denotes the value of Gaussian surface at location
jx; jy
� �

. In this study, we use a standardized two-dimen-
sional Gaussian surface which satisfies:

ðð
G x; yð Þdxdy ¼ 1 (5)

The bandwidth, h, controls the shape of the Gaussian
surface. The Gaussian function and the bandwidth are
defined as follows:

G x; yð Þ ¼ 1
2πh

� e�
x2þ y2

2h

� �
(6)

T he rationale of introducing h is that, by adjusting the
bandwidth, we are able to manipulate the size of the
interested region. A smaller bandwidth allows a steeper
bell-shaped Gaussian surface function, giving more
importance to pixels closer to the center. The contribu-
tion weakens dramatically as a pixel is located further
away. A larger bandwidth, on the contrary, allows a
larger kernel size and a smoother weighting surface.

We performed a sensitivity analysis to identify an opti-
mal h value. When assigning a h value, we gradually
increased the radius of R for each VGI point from 1 pixel
(30 m) to 33 pixels (990 m) in an interval of 30 m. Figure 6
demonstrates the sensitivity of NDWI weight on the
increase of radius R at h = 15,000 m. The weight gradually
reaches the saturation point when R reaches to around
360 m for both the verified tweets (Figure 6(a)) and flash
flood points (Figure 6(b)), indicating that the NDWIs of the

Figure 5. A three-dimensional Gaussian surface overlapped with the NDWI surface (a) and a two-dimensional profile (b).

Figure 6. Sensitivity analysis of for NDWI weights at the verified tweets (a) and the NOAA flash flood points (b).
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area within a 360-m distance are heavily weighted. We
assume that a 360-m buffer fairly represents the wetness
dynamics around a VGI point. Therefore, we decided to
set bandwidth h as 15,000 m in this study, with which a
360-m radius around a certain VGI contributesmore to the
total moisture weight of this point.

The RS/VGI integrated flood probability model

Using the two weighting components (PID and
Gaussian kernel) described above, a final FPM is gener-
ated by integrating the moisture weight to each PID
layer. The moisture weights for all VGI points have been
standardized to a range from 0 to 1. It should be noted

that all VGI points are treated equally in terms of their
confidence level. In other words, no extra weights were
assigned based on their authoritativeness. The FPM at
any location j in the study area is defined as follows:

FPMj ¼
X
i

W ið Þ � PIDij (7)

The proposed model is implemented in Python environ-
ment, which renders a coding platform for automatically
chaining differentmodules described above. At each pixel
of the study area, the model generates a FPM indicating
the probability of being flooded at this location.

Results and discussion

Figure 7 demonstrates the NDWI distributions of the
study area. In general, the NDWI along the Congaree
River remains high and the flood remnants still cover a
broad swath of agricultural lands and wetlands in the
southeast of the city and forests in the north.

Based on the IDW rule and elevation variations, a
continuous PID layer was extracted using each VGI
point. A total of 41 PID layers were extracted from 18
tweets and 23 NOAA flash flood points. Figure 8
demonstrates several examples of the single-estimation
PID layers. Darker blue area in the figure indicates lower
flood probability, whereas red area indicates higher
probability. Figure 8 shows that the contribution of
the center VGI decreases as a location is moving further
away from this VGI (according to the IDW rule, influence
of each VGI is inversely proportional to the distance).Figure 7. The NDWI distribution of the study area.

Figure 8. Examples of flood probability map based on single VGI point.
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Within a Gaussian kernel, a moisture weight was
assigned to each single-estimation PID. A final FPM
was calculated by summing the moisture-weighted
PIDs, and was standardized in a range of [0, 1]
(Figure 9(a)). It shows a continuous surface of probabil-
ity ranking across the study area, and therefore, pro-
vides the flood severity dynamics that could be used for
a more quantitative assessment of the flood.

The resulted FPM map was evaluated with the USGS
official inundation map. In Figure 9(b), the USGS survey
boundary (black outline) is overlaid to the FPM. The
grey zone within the boundary represents the USGS-
surveyed flooded area. It should be noted that USGS
only examined areas within the boundary. Areas falling
outside boundary were not surveyed. In general, our
FPM areas with high flood probability matched well
with the USGS inundation map within its boundary.
Beyond the USGS survey boundary, the FPM map pro-
vided continuous probabilities for the entire study area.
In addition, instead of sending people to the flooded
area for real-time ground survey, the only labor
involved in our proposed approach was the verification
of VGI points. Compared to the massive ground survey
process, our proposed FPM approach is much less time-
and labor-consuming.

The binary USGS inundation map within its survey
boundary is the only official source of flood extents in
this study, which limits the quantification of the validity
of our proposed model. However, by visually and sta-
tistically comparing the histogram patterns, some com-
parative conclusions still can be drawn.

Firstly, a histogram comparison between the FPM
map and the USGS inundation map was performed.
Figure 10(a) illustrates the FPM histogram for the
whole study area (cells with FPM = 0 were not consid-
ered). In general, there was a decreasing trend for cell
numbers when the index increased. The mean FPM
value for the whole study area was 0.131. After we
constrained the model output within the USGS

inundation boundary, the results indicated a normal
distribution with a mean value of 0.496 (Figure 10(b)).
This indicates that the areas with high probabilities
generated from our model are highly correlated with
the flooded area in the USGS inundation map. Figure 10
(c) shows that our model successfully captures the
USGS inundated areas. Areas with higher flooding prob-
ability index are more likely to be included within the
USGS inundation boundary as the two lines in Figure 10
(c) continue to approach each other. An abrupt increase
occurs when flood probability reaches the value of 1,
possibly explained by the discontinuous characteristic
of the IDW distance decaying function.

We further summarized the FPM values within the
USGS-extracted inundation area. Overall, 72.04% of the
inundation area had high FPM values of 0.4–0.6 and
10.11% in 0.6–0.8. These indicate that our results match
well with the official inundation map.

Unlike traditional hydrological modeling, our
method requires much less landscape-based inputs,
thus making it easy to be generalized and applied for
other flooding cases. Moreover, this new weighting
method separates the confidence level of VGI from its
intrinsic relation to population, providing a more scien-
tific and robust weighting approach based on the
moisture measurement (NDWI) obtained from remote
sensing imagery. In addition, by viewing remote sen-
sing as a weight giving source instead of a major map-
ping source, we largely reduced the intrinsic flaws in
temporal resolution of remote sensing data.

Modified from the geostatistical model in Li et al.
(2018), our proposed method combines the spatially
clustered VGI points with continuous observation from
satellite imagery. It considers three different weights
including distance, relative elevation, and NDWI.
Unlike the traditional point interpolation methods, the
proposed method captures not only the variance of
geolocation and elevation, but also the spatially contin-
uous variance of moisture status from the image.

Figure 9. The final flood probability map (FPM) (a) and the FPM overlaid with USGS inundation map (grey shaded) and its map
boundary (black line) (b).
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Theoretically, more attention should be given to a cer-
tain area if it remains wetter after the flood event. The
ground moisture (NDWI) distribution in a kernel cen-
tered at each VGI point attaches the moisture condition
to those VGI points, providing a more comprehensive
assessment of the flood probability from each VGI
point. Therefore, this weighting approach yields a
more objective estimation than the Li model (Li et al.
2018) that heavily relies on the tweets density.

The proposed method is able to produce a near-real
time flood estimation once a satellite image is acquired.
It takes much shorter time than traditional surveying
approach. Flood-related tweets and official flash flood
reports can be acquired in real time and a post-event
image can be acquired within several days. Once all the
required inputs are ready, with our current processing
approach, the running time of the proposed model on
a single computer is around 9 min.

One limitation of this method, however, is the time
lag of post-event remote sensing imagery. In this study,
a three-day lag ALI image was used to generate the
NDWI under the assumption that soil moisture status

fairly reflects the flood incidents 3 days ago. As the time
lag becomes larger, their correlation would certainly go
down until null. An image with a short time lag is highly
recommended to be included in the model. Another
limitation is the uncertainties when using the open
source VGI data. The extraction of flood-related tweets
from tweets pool based on current text matching tech-
nique often fails to guarantee the validity of text-based
tweets. Further manual verification after keyword
matching is still needed to assure the relevance and
improve the accuracy. Another issue needed to be
concerned is the sample size of VGI points used in
this study. Limited by the uncertainty raised by the
traditional text matching algorithm, the semi-automatic
workflow of selecting tweets we used in this study
requires labor involved checking. This process demands
that the tweets content (text, photos, or both) have a
strong correlation with their exact location, which lar-
gely reduce the number of available tweets to be used
in the study. However, a small amount of verified flood-
related tweets with strong connect to their intrinsic
geolocation is preferred than a large amount of less

Figure 10. The FPM histogram for the entire study area (a); the FPM histogram within the USGS inundation boundary (b); the FPM
histograms for the entire study area and that within the USGS inundation boundary (c).
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related tweets generated through a full automatic pro-
cess. We believe that with the rapid development of
social media and machine learning technology, this
process could be automated eventually with an improv-
ing accuracy.

Conclusion

Rapid extraction of flood inundation has always been
critical for emergency managers and local authorities to
conduct quick assessment of flood damage and provide
support in areas with immediate attention. Taking the
2015 South Carolina Flood as an example, this study
develops a near-real time flood probability map to
improve situational awareness during a flooding event.
We developed a rapid flood-mapping model by firstly,
generating PID layers through the integration of verified
VGI points (verified flood-related tweets and flash flood
locations issued by local government) and DEM, and
secondly, attaching weights to them via image-extracted
land surface wetness conditions. Superior to traditional
surveying approaches, the proposed model is able to
provide a continuous flood probability ranking in a
much shorter time throughout the study area. With the
spatially continuous inputs of surface wetness, it also
reduces the uncertainties raising from the validity of
tweets points in geostatistical studies that merely rely
on social media by separating the confidence level of
tweets from its intrinsic relation to population density,
thus providing a more robust weighting scheme based
on wetness measurements. In addition, the proposed
model is compatible with other crowdsourcing and
authoritative databases, allowing other supplemental
information to be added in the future.

We believe that the methodology used in this article
could seed a wide range of future flood studies for
rapid and improved flood situational awareness in a
city as well as at a regional level. The resulted flood
probability map improves situational awareness right
after a flood event by connecting VGI with surface
wetness conditions, aiding local authorities and respon-
ders with better decision-making and responses.
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