
Transactions in GIS. 2020;00:1–24.	 wileyonlinelibrary.com/journal/tgis	   |  1© 2020 John Wiley & Sons Ltd

DOI: 10.1111/tgis.12620  

R E S E A R C H  A R T I C L E

Local motion simulation using deep reinforcement 
learning

Dong Xu1,2 |   Xiao Huang2  |   Zhenlong Li2  |   Xiang Li1

1Key Laboratory of Geographical 
Information Science (Ministry of Education), 
School of Geographic Sciences, East China 
Normal University, Shanghai, China
2Geoinformation and Big Data Research 
Laboratory, Department of Geography, 
University of South Carolina, Columbia, 
SC, USA

Correspondence
Zhenlong Li, Geoinformation and Big Data 
Research Laboratory, Department of 
Geography, University of South Carolina, 
Columbia, SC, USA.
Email: zhenlong@sc.edu

Xiang Li, Key Laboratory of Geographical 
Information Science (Ministry of Education), 
School of Geographic Sciences, East China 
Normal University, Shanghai, China .
Email: xli@geo.ecnu.edu.cn

Abstract
Traditional local motion simulation focuses largely on avoid-
ing collisions in the next frame. However, due to its lack 
of forward looking, the global trajectory of agents usually 
seems unreasonable. As a method of optimizing the overall 
reward, deep reinforcement learning (DRL) can better cor-
rect the problems that exist in the traditional local motion 
simulation method. In this article, we propose a local motion 
simulation method integrating optimal reciprocal collision 
avoidance (ORCA) and DRL, referred to as ORCA-DRL. The 
main idea of ORCA-DRL is to perform local collision avoid-
ance detection via ORCA and smooth the trajectory at the 
same time via DRL. We use a deep neural network (DNN) as 
the state-to-action mapping function, where the state infor-
mation is detected by virtual visual sensors and the action 
space includes two continuous spaces: speed and direction. 
To improve data utilization and speed up the training pro-
cess, we use the proximal policy optimization based on the 
actor–critic (AC) framework to update the DNN parameters. 
Three scenes (circle, hallway, and crossing) are designed to 
evaluate the performance of ORCA-DRL. The results reveal 
that, compared with the ORCA, our proposed ORCA-DRL 
method can: (a) reduce the total number of frames, leading 
to less time for agents to reach their destination; and (b) ef-
fectively avoid local optima, evidenced by smoothed global 
trajectories.

www.wileyonlinelibrary.com/journal/tgis
https://orcid.org/0000-0002-4323-382X
mailto:﻿
https://orcid.org/0000-0002-8938-5466
mailto:﻿
mailto:zhenlong@sc.edu
mailto:xli@geo.ecnu.edu.cn


2  |     XU et al.

1  | INTRODUC TION

Multi-agent navigation, as one of the hot topics in GIScience, has attracted widespread attention in the past few 
decades due to its important role in robotics (McLurkin & Demaine, 2009), virtual reality (Pettré et al., 2006), and 
evacuation simulation (Pidd, De Silva, & Eglese, 1996). At the micro level, the goal of local motion simulation is to 
find a smooth and collision-free shortest path for agents to move from one position to another. Moreover, it aims 
to ensure that agents do not collide with each other during movement. Based on the existing literature, multi-
agent navigation is generally composed of two parts: global path planning, committed to smoothing the shortest 
path (Kallmann, 2014; Van Toll, Cook, & Geraerts, 2012), and local motion simulation, committed to avoiding 
static and dynamic obstacles (Fiorini & Shiller, 1998; Helbing & Molnar, 1995). Until now, numerous methods have 
been focused on local motion simulation. Some of the early efforts in the 1980s included the agent-based model 
developed by Reynolds (1987) to simulate flock/herd behaviors, where agents can conduct a series of behaviors 
such as seeking, arriving, pursuing, and following a path. Helbing, in contrast, proposed a social force model (SFM) 
to formulate local dynamics for agents (Helbing & Molnar, 1995). SFM-based research has been used widely for 
evacuation (Helbing, Farkas, & Vicsek, 2000), group behavior (Moussaïd, Perozo, Garnier, Helbing, & Theraulaz, 
2010), and self-organizing behavior (Helbing, Molnár, Farkas, & Bolay, 2001). However, the parameters between 
various forces in the aforementioned models need to be carefully designed to balance the movements of the agent 
towards reality (Curtis & Manocha, 2014).

Unlike SFM, where forces are applied to describe various behaviors, velocity obstacle (VO) methods can suc-
cessfully avoid collisions with a promising performance by using computational geometry (Fiorini & Shiller, 1998; 
Snape, Van den Berg, Guy, & Manocha, 2011; Van den Berg, Lin, & Manocha, 2008). Van den Berg, Guy, Lin, and 
Manocha (2011) proposed an optimal reciprocal collision avoidance (ORCA) method, which is widely used in many 
studies as one of the best collision-free motion methods, such as crowd simulation (Narain, Golas, Curtis, & Lin, 
2009), group behaviors (Karamouzas & Overmars, 2011), and trajectory planning (Guy, Lin, & Manocha, 2010). 
Similar to SFM, however, ORCA only guarantees collision avoidance in the next frame and tends to produce un-
reasonable behavior, which can be observed from the global trajectories of simulated agents (Godoy, Karamouzas, 
Guy, & Gini, 2015).

With the advancements in hardware and software over the past decade, machine learning has achieved 
remarkable results in image classification (Krizhevsky, Sutskever, & Hinton, 2012), object tracking (Bertinetto, 
Valmadre, Henriques, Vedaldi, & Torr, 2016), and natural language processing (Sutskever, Vinyals, & Le, 2014). 
Researchers began to study the movement rules of agents using the emerging data-driven methods (Bera, Kim, 
& Manocha, 2015; Kim, Bera, Best, Chabra, & Manocha, 2016; Lee, Choi, Hong, & Lee, 2007; Zhong, Cai, Luo, & 
Yin, 2015). Different from traditional methods, data-driven methods allow movement rules to be learned from life, 
thus better reconstructing the movements of agents in various scenarios. Despite the success of those machine 
learning methods, the learned movement rules usually have many limitations. For example, the current learned 
behavior in one scene is difficult to apply to other scenes, and the method precision depends largely on the camera 
coverage (Kim et al., 2016) and attributes of the video stream (Bera et al., 2015).

With the AlphaGo (Silver et al., 2017) defeating human Go players, deep reinforcement learning (DRL) has 
gradually attracted interest. Unlike supervised learning and unsupervised learning, DRL, designed to optimize 
long-term rewards rather than single-step optimization, is a strategic learning method based on the Markov pro-
cess. By setting the relevant reward function, DRL encourages agents to find the optimal action in order to get 
the most rewards at a particular state (Sutton & Barto, 2018). There are many popular DRL methods, such as the 
double deep Q-network (Double DQN) (Van Hasselt, Guez, & Silver, 2016), twin delayed deep deterministic policy 
gradient (TD3) (Fujimoto, van Hoof, & Meger, 2018), soft actor–critic (SAC) (Haarnoja, Zhou, Abbeel, & Levine, 
2018), and proximal policy optimization (PPO-Clip) (Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017). With 
a similar concept to DRL, local motion simulation also has Markov nature with the necessity to choose the appro-
priate action in a particular state to avoid collisions. The difference, however, is that traditional motion simulation 



     |  3XU et al.

only considers collision avoidance in the current state, ignoring global trajectory optimization. Therefore, to opti-
mize the global trajectory, some studies started to incorporate DRL in agent motion simulation (Lee, Won, & Lee, 
2018; Long et al., 2018). Experiments showed that DRL-based motion simulation leads to more reasonable and 
smoother trajectories than traditional models. However, the integration of DRL and motion simulation is still in a 
rather nascent stage and deserves further exploration.

In this article, we propose a hierarchical judgment mechanism for local motion simulation where DRL is applied 
to calculate the desired velocity for each agent, and ORCA is applied to avoid local collision. Our goal is to guaran-
tee collision avoidance during motion simulation and make the global trajectory as smooth as possible. Our con-
tributions are threefold. (a) We applied the DRL to smooth the global motion trajectory. Through the application 
of DRL, agents are granted certain foresight; therefore, they can adjust their motion and avoid possible conflicts 
in advance, leading to a smooth overall trajectory. (b) We selected ORCA to avoid collision. In DRL-based motion 
planning, the movement of the agent is related to the reward function. The use of ORCA can reduce the dilemma 
of parameter adjustment between goal reward and collision reward in the reward function. (c) We applied the 
PPO-Clip algorithm to train the deep neural network (DNN). Under the premise of achieving good performance, 
PPO-Clip can improve sampling efficiency and is relatively simple to implement.

The remaining sections are organized as follows. Section 2 summarizes the existing literature concerning local 
motion planning of agents, DRL, and agent motion planning based on DRL. Section 3 introduces the ORCA and 
DRL method, defines the state space, action space, and reward function, and describes the network architecture. 
Section 4 describes the settings of the relevant parameters in the environment and the computer configuration 
and introduces three designed scenes to test our proposed method (ORCA-DRL) by comparing it with the tra-
ditional ORCA method. Section 5 presents and discusses the results of frame analysis and trajectory analysis, 
followed by a discussion of the limitations and future directions in Section 6 and conclusions in Section 7.

2  | REL ATED WORK

Based on the research scale, multi-agent navigation can generally be divided into three categories: macroscopic 
scale, mesoscopic scale, and microscopic scale. Macroscopic motion simulation usually extracts the space to a 
node-arc network model, where agents are viewed as the flow on an arc (Cova & Johnson, 2003; Friesz, Luque, 
Tobin, & Wie, 1989; Merchant & Nemhauser, 1978). Macroscopic motion simulation is often applied in outdoor 
congestion analysis and optimization to assist decision-making (Li, Li, Xu, Xu, & Zhang, 2018). At mesoscale, mo-
tion simulation studies usually focus on indoor situations, which have attracted increasing attention with the 
development of indoor GIS in the past two decades (Li, Claramunt, & Ray, 2010; Xu, Hijazi, Mebarki, Meouche, & 
Abune'Meh, 2016). Mesoscopic motion simulation first abstracts the research area into a series of regular grids, 
then simulates agent movement by updating the occupancy state of the grid at each frame (Kirchner, Nishinari, & 
Schadschneider, 2003; Varas et al., 2007; Yuan & Tan, 2007; Zheng, Zhong, & Liu, 2009). It has developed many 
successful cases in indoor emergency evacuation, especially in a rather dynamic environment (Zheng, Jia, Li, & 
Zhu, 2011). However, the macroscopic model and the mesoscopic model both have their own limitations. The 
former fails to consider the individual behavior of the agent, while the latter discretizes the state and action space, 
thus making it difficult to accurately simulate individual behavior. In comparison, the microscopic local motion 
simulation generally abstracts the agent into a disc with a certain radius and divides time into discrete frames. 
Each agent, as a completely autonomous entity with no implicit communication, calculates the optimal velocity at 
each frame according to the environment, including the velocity and position of the surrounding agents.

This article explores motion simulation at the microscopic scale, where each agent is defined as an indepen-
dent entity with a specific shape and can move in any configuration space (Lozano-Perez, 1990). In the remainder 
of this section, we briefly review the related research on local motion simulation and the DRL, as well as the prog-
ress of local motion simulation based on DRL.



4  |     XU et al.

2.1 | Local motion simulation

In local motion simulation, each agent is regarded as an automatic self-judgment robot whose goal is to move to the 
destination while avoiding obstacles and other agents. The SFM quantifies the motion decision via the influence 
of the interaction of attraction and repulsive force (Helbing & Molnar, 1995; Helbing et al., 2000; Karamouzas, 
Sohre, Narain, & Guy, 2017). The force-based model can be extended to describe the agent’s complex dynamic be-
havior, such as emergency evacuation (Han & Liu, 2017), social group behaviors (Mehran, Oyama, & Shah, 2009), 
and self-organizing behavior (Helbing et al., 2001). Given the difficulty in balancing the parameter settings among 
various forces, the SFM often shows an unreasonable trajectory (Curtis & Manocha, 2014). Different from the 
SFM, the VO model focuses only on local collision avoidance and has a promising performance (Fiorini & Shiller, 
1998). Given its ability to guarantee collision avoidance, the velocity-based method has been widely used, for ex-
ample the reciprocal velocity obstacle (RVO) model is an extension of the VO model applied to reduce oscillation 
by considering the reciprocal effect (Van den Berg et al., 2008). To further improve the performance of the RVO 
model, Van den Berg et al. (2011) proposed a better approach, ORCA, which constructs the collision avoidance 
region by allowing each agent to take half the responsibility of avoiding pairwise collisions (i.e. the reciprocal prop-
erty) and calculates the optimal velocity by simplifying the problem to a low-dimensional linear program. ORCA 
demonstrates powerful capabilities in both efficiency and robustness to n-body collision avoidance. Besides, it 
could easily be extended to three-dimensional-space collision avoidance. Due to its excellent performance in 
collision avoidance, ORCA has successfully replaced RVO and is widely used in numerous studies as one of the 
best collision-free motion methods. For example, Guy et al. (2009) proposed a highly parallel collision avoidance 
method based on ORCA, which simulates thousands of agents in a real-time manner. Snape et al. (2011) proposed 
a hybrid reciprocal velocity obstacle to solve the oscillation problem. Alonso-Mora, Breitenmoser, Rufli, Beardsley, 
and Siegwart (2013) proposed a non-holonomic ORCA method that guarantees a visually appealing trajectory. 
Despite the fact that all of these models can ensure the agent does not collide at the next frame, they failed to 
provide a mechanism to ensure the smoothness of the global trajectory (Godoy et al., 2015).

To smooth the entire motion trajectory, researchers have proposed a collision avoidance method based on 
simulated visual information (Dutra, Marques, Cavalcante-Neto, Vidal, & Pettré, 2017; Ondřej, Pettré, Olivier, & 
Donikian, 2010). Through the incorporation of virtual visual judgment, a more realistic and smooth motion trajec-
tory can be obtained. Unlike the aforementioned traditional methods where the collision is only detected when 
the distance is immensely close, in visual collision avoidance, agents usually check the possibility of collision in 
advance. The vision-based method, however, is often computationally complex and sensitive to parameter design. 
Furthermore, many studies extract pedestrian movement patterns from surveillance videos, allowing the authen-
ticity and reliability of the simulation to be achieved by collecting and analyzing the action choices of pedestrians 
at different states via machine learning-based data-driven approaches (Bera et al., 2015; Lee et al., 2007; Zhong 
et al., 2015). However, the accuracy of such studies largely depends on the pedestrian trajectories extracted from 
the video stream. In addition, the purpose of those studies is to study the behavior of pedestrians, rather than to 
propose an algorithm to avoid collisions. Besides, given that the trajectories are obtained in a specific scenario, 
those methods lack the ability to be generalized to other scenarios.

2.2 | Deep reinforcement learning

As one branch of machine learning, DRL often serves as a means in agent-based modeling to optimize decision 
problems with Markov properties (Schmidhuber, 2015; Sutton & Barto, 2018). Given the current environment 
state, a reward is calculated after a certain agent takes its action, leading to the next state. While the state is being 
updated, agents take further action. This process continues until the interaction ends. In DRL, all the agents are 
expected to take optimal action for a certain state to maximize the expected value of the total reward.



     |  5XU et al.

DRL can be roughly divided into a value-based deep Q-network (DQN) method (Mnih et al., 2015) and a 
strategy-based policy gradient (PG) method (Williams, 1992). DQN is an on-policy method that does not require 
complete interactive trajectory information, allowing a feasible solution to be given in a rather short time. There 
are many mature DQN methods at present. For example, Double DQN utilizes a separate target network to es-
timate the target value, leading to a reduced parameter correlation between the estimated value and the target 
value by delaying the update of the target network (Van Hasselt et al., 2016). By separating the state-action value 
within the network into state value and advantage value, Duel DQN can effectively avoid unsatisfactory states 
and speed up the learning performance (Wang et al., 2015). However, the value-based method cannot easily be 
extended to a high-dimensional continuous space and can easily fall into local optima, given the fact that it does 
not rely on global trajectory data (Sutton, McAllester, Singh, & Mansour, 2000). In comparison, the PG method 
is able to output the action directly based on the state, achieving a globally optimal solution from calculations in 
high-dimensional space (Williams, 1992). However, this method generally requires a complete interaction trajec-
tory, usually leading to long training time. The actor–critic (AC) framework is the learning framework that com-
bines the aforementioned two methods (Konda & Tsitsiklis, 2000; Peters and Schaal, 2008). The AC framework is 
able to speed up the training process and extend into continuous action space.

The aforementioned methods are on-policy methods, where the training data need to be acquired from the 
current policy, while the previously collected data cannot be used. To improve data utilization, off-policy methods 
have been developed. As an off-policy method, actor–critic with experience replay increases the sample efficiency 
through experience replay and obtains satisfactory results under the premise of interacting with the environment 
as little as possible (Wang et al., 2016). Lillicrap et al. (2015) proposed a deep deterministic policy gradient (DDPG), 
allowing the Q-function and policy to be learned in a continuous space. Haarnoja et al. (2018) proposed the SAC, 
aiming to maximize the entropy in actor learning. Although the sampling efficiency is improved in off-policy meth-
ods, it requires a large amount of memory space to store historical trajectory data. Besides, most of the time, the 
actor network and the critic network cannot be shared, therefore high-performance computing is always required. 
Given those limitations, Schulman et al. (2017) proposed a PPO-Clip algorithm, which improves the sample effi-
ciency via important sampling, at the same time constraining policy update via clipped probability ratios (a suitable 
replacement for the Kullback–Leibler [KL] penalty). The PPO-Clip algorithm provides a shared network where 
the actor and the critic are able to share the majority of the network. Coupled with the multi-process technique, 
PPO-Clip can be regarded as a hardware-friendly algorithm, compared with SAC and DDPG. Although PPO-Clip is 
intrinsically an on-policy algorithm, it can take advantage of historical data with acceptable memory space. Given 
its numerous advantages, PPO-Clip received wide attention and became the default DRL algorithm at OpenAI, 
a famous artificial intelligence (AI) company. It has been widely adopted in many applications, such as quadrotor 
control (Lopes, Ferreira, da Silva Simões, & Colombini, 2018), multi-joint arm control (Tieck et al., 2018), and loco-
motion behavior learning (Heess et al., 2017). In this article, we adopted the PPO-Clip algorithm to train our DNN 
model (described in Section 3.2).

2.3 | Motion simulation using DRL

Many studies have applied DRL in motion simulation. Based on different foci, DRL-supported motion simula-
tion can generally be divided into single- and multi-agent navigation. For single-agent navigation, Prescott and 
Mayhew (1992) proposed a DRL method to dictate obstacle avoidance behavior through a virtual visual sensor. 
In their method, they minimized the negative reward arising from collisions by exploring the surrounding environ-
ment. Xia and El Kamel (2015) proposed a DQN method to automatically navigate mobile vehicles in an unknown 
environment. Ramezani Dooraki and Lee (2018) proposed an end-to-end memory-based DRL method that allows 
agents to automatically explore unknown environments while avoiding obstacles. Wu, Esfahani, Yuan, and Wang 
(2019) proposed a double deep Q-learning network method to directly map the raw depth images to control 



6  |     XU et al.

commands. However, single-agent navigation is usually used for environmental detection for real robots, where 
the purpose is to avoid obstacles.

Different from single-agent simulation, multi-agent navigation requires agents to avoid moving obstacles, in-
cluding other agents. Torrey (2010), for instance, applied reinforcement learning in crowd simulations and demon-
strated its high feasibility. Torrey (2010) first established a state-action tabular and then obtained the optimal 
solution via the Q-learning method. Godoy et al. (2015) proposed an adaptive learning approach based on multi-
armed bandits to compensate for the inefficient global behavior generated in existing physical models. Their 
experimental simulations showed that their methods could effectively reduce local collisions and smooth the 
simulation process, leading to more realistic agent behavior. Lee et al. (2018) proposed a DRL-based AC framework 
in crowd simulation with great generalization ability, in which the reward function is divided into goal reward, 
collision reward, and smooth reward. Their experiment used visual sensors as the state input, and magnitude 
along with velocity direction as outputs. Ravichandran, Yang, Peters, Lansner, and Herman (2018) regarded agent 
simulation as a multi-objective problem by applying a modular RL method. Their model shows good performance 
without further parameter tuning. Long et al. (2018) presented a decentralized collision avoidance policy for 
multi-robot systems by directly detecting the environment via raw sensors, further serving as primary inputs to 
the DRL network. Multi-agent navigation needs each agent to detect the dynamic environment and guides the 
agent to get to the destination without collision by setting multiple reward functions. However, it usually requires 
careful adjustment of the parameters to achieve the dual requirements of smoothing the trajectory and avoiding 
collisions.

In summary, popular local motion simulation methods, such as ORCA, can effectively avoid the collision of 
agents but are prone to unreasonable trajectories, especially in complicated situations due to the lack of pre-
dictability. The application of the DRL method aims to optimize the global motion trajectory by defining suit-
able reward functions. However, local motion simulation based on the DRL alone is likely to cause collisions, 
given its unstable nature (Irpan, 2018; Stadelmann et al., 2018). Therefore, we propose a simulation algorithm 

F I G U R E  1 Environment checking through visual sensors



     |  7XU et al.

that combines ORCA and DRL (termed ORCA-DRL) to guarantee collision avoidance via ORCA while achieving a 
smooth global trajectory via DRL. This study does not focus on the cross-comparison of various local simulation 
methods, but aims to illustrate the improvement when the DRL algorithm is introduced and integrated into the 
widely used ORCA model.

3  | METHODOLOGY

3.1 | Overview

We assume N agents in the local environment and each agent has its predefined destination (Figure 1). The goal 
of each agent is to reach the destination with the least frames and avoid collision with obstacles and other agents 
during movement. For simplicity, we set the environment to be a two-dimensional space ℝ2, where each agent is 
represented by a disc with radius r and the obstacles, shown as green rectangles in Figure 1, are represented by 
a combination of line segments. For each agent i , we define its position at frame t as pt

i
(2d-vector), the destina-

tion position as gi(2d-vector), and the velocity at time t as vt
i
(2d-vector). vt

i
 further includes speed vt

i
(magnitude) 

and direction at
i
(magnitude), the desired velocity as vprefi (2d-vector), the optimal velocity as vopti (2d-vector), and the 

maximum speed limit as vmax
i

(magnitude). The position and velocity of the surrounding obstacles are observed by 
agents as they consider other agents as moving obstacles. We define the interval between two adjacent frames as 
�. At each frame, each agent updates its position based on its current velocity vt calculated by the motion planning 
method. The simulation ends when all agents arrive at their destination position.

Agents check the surrounding environment through visual sensors at each frame. Specifically, as shown in 
Figure 1, the current agent is marked as a red circle with the current velocity v and the obstacles are marked as 
green rectangles. The visual sensor of each agent consists of a 180° viewing angle and m emitted rays (m = 256 
in our experiment) at equal intervals from the agent’s center position. If a ray detects an obstacle, it will be trun-
cated as shown by the yellow dashed line, meaning that the agent’s exploration in this direction is obscured by the 

F I G U R E  2 General workflow



8  |     XU et al.

obstacle (agents do not see through obstacles). A total of m segments with different lengths are derived, repre-
senting the environmental information observed by the agent at the current frame.

The whole process in our research can be divided into two parts (Figure 2): the  simulation process and 
the training process. The simulation process consists of multiple episodes. At each episode (n frames), the tra-
jectories of agents obtained from each frame t are saved into a container, in which the trajectories are further 
utilized to update the actor and critic, two parameters in our proposed DNN model. After training of an episode, 
the trajectories in that episode are released from the container and the trajectories from the next episode are 
fed to the container. The detailed simulation process in each frame t is composed of the following five steps: (a) 
extracting the state st from the environment; (b) inputting st to the agent policy, i.e. the DNN, and outputting the 
action a�

t
 based on policy �; (c) transferring a�

t
 to a desired velocity vprefi  and feeding vprefi  to the ORCA to produce 

an optimal collision-free velocity vopti ; (d) further adjusting the agent position based on vopti ; and (e) proceeding to 
the next frame st+1 and providing a reward rt to the next frame. In the following sections, we present more details 
about our simulation architecture.

3.2 | Optimal reciprocal collision avoidance

We applied ORCA to select the optimal velocity while avoiding collisions. ORCA first calculates the VO region for 
the current agent and ORCA regions (half-plane non-collision velocity set) for all surrounding agents, then further 
selects the optimal velocity from the intersection of ORCA regions.

Located at PA and PB, two agents A and B are moving with velocity vA and vB, respectively (Figure 3a). We define 
a ray function, starting at p and heading to v:

we further define vA−B=vA−vB. The VOA

B
 region can be calculated using the formula proposed by Fiorini and Shiller 

(1998):

(1)Γ (p, v)={p+�v|�≥0}

(2)VO
A

B
={v|Γ (

PA, vA−B
)
∩
(
B−A

)
≠�}

F I G U R E  3 ORCA method: (a) spatial relationship between A and B; and (b) velocity relationship and the 
ORCA space



     |  9XU et al.

where B⊕−A represents the configuration space of agent B in relation to agent A. Further, whether a colli-
sion might happen can be checked through the relationship between vA−B and the VOA

B
 region (Figure 3b). If vA−B 

falls within the VOA

B
 region, then collision will occur within �. If vA−B falls outside the VOA

B
 region, then collision is 

avoided. If a collision is determined to occur, ORCA finds the nearest point Pu from vA−B to the VOA

B
 edge (the nor-

mal at Pu is termed nu). We further define u=Pu−vA−B.
For agent A, we assume that its desired velocity in the next time is vpref

A
. Based on the reciprocal principle be-

tween the two agents, vpref
A

 needs to fall into the range 
[
0,

1

2
u
]
 to avoid collision. The ORCA region for agent B to 

agent A is defined as follows:

with n agents (B, C, D, …) surrounding agent A, a total of n half-plane solution sets are derived, respectively, as 
ORCA

A

B
, ORCA

A

C
, ORCA

A

D
, … The optimal velocity for agent A is derived from the intersection of all n half-plane 

solution sets (closest to the vpref
A

 and minimally changed compared with vt−1
A

). If the intersection is empty or the 
intersection violates kinematic principles, agent A stops moving at the next frame to avoid collision. Given the 
reciprocal property, the simulation results will not be affected by the order of the agents being simulated.

3.3 | Deep reinforcement learning

3.3.1 | AC framework

Given the fact that the current position (state) of the agent is only related to the previous position (last state), the 
trajectory smoothing can be solved via DRL as it belongs to the Markov decision process.

We assume that each agent optimizes its own trajectory independently, allowing it to reach the destination 
with the fewest frames. A single agent-based DRL method is applied, since we assume there is no explicit coopera-
tion or competition among agents but they can sense the positions and velocities of their neighbors, thus affecting 
their own movement decisions. The DRL method applied in this study generally consists of three parts: environ-
ment, agent, and reward function. At each frame t, we define the agent action as a�

t
, the current environment state 

as st, and the policy as �. Based on st and a�
t
, feedback, including the next state st+1 and the corresponding reward 

value rt+1, will be determined by the environment. When the interaction is over, a trajectory � is formed containing 
all the states and actions, that is � =

(
s1, a

�

1
, s2, a

�

2
, … , sn, a

�
n

)
. The total reward, defined as R� (�), equals 

∑n

t=1
� t−1rt,  

where � is a discount factor. The aim of DRL is to derive an optimal trajectory �opt so that R
(
�opt

)
 is maximized. 

Since R� (�) is a random variable, we maximize the expectation of R�  (E�∼�
[
R� (�)

]
). R�  can then be approximated 

via multi-sampling:

where p� (�) represents the union probability for the given trajectory under the policy �, that is:

(3)ORCA
A

B
=

{
v|
(
v−

(
v
pref

A
+
1

2
u

))
nu≥0

}

(4)E�∼�
[
R� (�)

]
=1∕N

N∑
n=1

R�

(
�n
)
p�

(
�n
)

(5)p� (�)=p
(
s1
)
p�

(
a�
1
|s1

)
p
(
s2|s1,a�1

)
p�

(
a�
2
|s2

)
⋯ p�

(
a�
n
|sn

)



10  |     XU et al.

Further, R
(
�opt

)
 can be calculated using a gradient ascent algorithm, where the total gradient under the current 

strategy can be described as:

In practice, we can replace R� (�
n) with the advantage function , defined as follows:

where V
(
st
)
 serves as a baseline to reduce the variance and rt+1+V

(
st+1

)
 represents the Q-value, that is R� (�).  

Schulman, Moritz, Levine, Jordan, and Abbeel (2015) proposed a generalized advantage estimation (GAE) 
method to further reduce the variance of policy gradient estimates. GAE introduced a new advantage function 
as GAE=

∞∑
l=0

(��)l t+l, where � is a hyperparameter between [0, 1]. In this article, we use GAE as our advantage 
function.

3.3.2 | Proximal policy optimization

To improve the sampling efficiency, Schulman et al. (2017) proposed a PPO-Clip algorithm that uses importance 
sampling to combine old policy �′ and current policy �. In our study, we applied this algorithm to utilize data from 
policy �′ to multi-update our DNN. The ratio between the two policies is defined as:

where �(a|s) and �′(a|s) represent the probability of choice action a in state s under policy � and �′, respectively.
To avoid the situation where the ratio changes too much in one update, PPO-Clip further applies a clipping 

parameter to restrict the update. We define the policy objective function Lppo_clip as below:

where ∈ is the clip parameter.
To maximize Lppo_clip, the ratio is trained by detaching the gradient of GAE. If GAE>0, we increase the ratio, 

but limit it within 1+∈; while if GAE<0, we reduce the ratio, but limit it within 1−∈. Assuming the batch size is n
, we define the mean square error (MSE) loss function to optimize the critic (i.e. to make Vestimate and Vtrue as close 
as possible). The MSE loss function is defined as follows:

where

(6)∇R� =1∕N

N∑
n=1

T∑
t=1

R�

(
�n
)
∇ log p�

(
an
t
|sn
t

)

(7)= rt+1+V
(
st+1

)
−V

(
st
)

(8)ratio=�(a|s)∕��(a|s)

(9)Lppo_clip=E
[
min

(
ratio×GAE, clip

(
ratio, 1−∈ , 1+∈

)
×GAE

)]

(10)L=

∑n

i

�
Vestimate
i

−Vtrue
i

�
n

2

(11)Vestimate=V��

(12)Vtrue=GAE+V�



     |  11XU et al.

In the remainder of this section, we describe the state spaces, action spaces, and reward functions involved in 
DRL, and further elaborate on our network structure.

State space
 t=

[
t
self

,t
env

]T
. t

self
 is composed of two velocities: vt and vt

g−p
, where vt

g−p
 is a unit vector with direction towards 

the destination position at frame t. t
env

 represents the dynamic environment an agent detected. From the descrip-
tion above, the environmental information at frame t observed by an agent can be described as an m-dimensional 
vector t

m
. Given the dynamic characteristics of the environment, we select the last four frames as the environ-

ment input, so t
env

=
[
t−3
m

,t−2
m

,t−1
m

,t
m

]T.

Action space
In traditional motion planning, vpref is always towards the direction of the destination position, potentially leading 
to a local optimum. The DNN applied in our study aims to smooth the trajectory by generating an adaptive vpref 
based on different states. The action space t has two components, � and �. They respectively represent the 
direction and magnitude of the velocity. � is the direction of the agent’s desired velocity vpref, ranging from �min to 
�max, while � is restricted to follow the kinetic principle, that is, the maximum speed of an agent i  cannot surpass 
vmax
i

(
∈
[
0,vmax

i

])
. The pair �and�, representing the desired velocity vpref, will be further fed into ORCA for collision 

judging, resulting in an optimal velocity vopt.

Rewards function
The rewards function  consists of two parts—the goal reward (goal) and the collision reward (collide):

where goal is further defined as

where wg is the weight of goal, ∥gi−pt−1i
∥ and ∥gi−pti ∥ respectively represent the distance from agent i  to its des-

tination in the last frame t−1 and in the current frame t. If the current position pt
i
 is closer to the goal gi than the 

previous position pt−1
i

, then agent i  receives a positive goal reward and vice versa.
We further define collide to push agents away from each other if they stay too close, resulting in congestion:

where ∥Po−Pi ∥ represents the distance between agent i  and another agent o. The greater the penalty wc, the more 
sensitive agents are to congestion.

3.3.3 | DNN architecture

The neural network architecture (Figure 4) is fed with t
env

 and t
self

 at each frame. The outputs of the architecture 
are the actor and the critic. Three one-dimensional convolution layers (out-channel 32, kernel size 3, and stride 1) 

(13)=goal+collide

(14)goal=

⎧
⎪⎨⎪⎩

wf, if ∥gi−p
t
i
∥< r

wg ∗
�
∥gi−p

t−1
i

∥−∥gi−p
t
i
∥
�
, otherwise

(15)collide=

⎧
⎪⎨⎪⎩

wc, if ∥Po−Pi ∥<wd

0, otherwise



12  |     XU et al.

are applied for feature extraction purposes. MaxPooling operations with kernel = 2 and ReLU nonlinearities (Nair 
& Hinton, 2010) are applied after each convolution layer. The resulting t

env
, after passing through three stacked 

one-dimensional convolution layers, serves as input to a fully connected layer with 256 rectifier units. As for t
self

 
(a four-dimensional vector), we first feed it into a fully connected layer with 32 rectifier units and then combine it 
with the feature extracted from t

env
. The resulting combination is passed to a fully connected layer with 128 recti-

fier units. The actor layer consists of two values: (1) mean of the speed (vt
mean

); and (2) direction (at
mean

). A sigmoid 
and a hyperbolic tangent activate function (tanh) are used to limit vt

mean
 to a range between 0 and 1 and at

mean
 to a 

range between −1 and 1.
We further define vt

mean
=
[
vt
mean

, at
mean

]
 and derive the final vt from a Gaussian distribution 

(
vt
mean

,vt
std

)
, where 

vt
std

 is the standard deviation, a constant hyperparameter. After that, we transform the vt to vpref by multiplying the 
corresponding coefficients.

4  | E XPERIMENT AND SCENE

4.1 | Coding environment

The implementation is based on a Python coding environment, where the PyTorch package (Paszke et al., 2019) 
is used to build a DNN for training the state-to-action relational mappings and the Gym package (Brockman et al., 
2016) is used to visualize the simulation. The simulation runs on a computer with Ubuntu 18.04 in an environment 
that consists of i5 CPU, 8G RAM, NVIDIA GTX1060 3G. A multi-core acceleration technique is used to speed up 
the data collection process, where each core as a worker tackles a simulation simultaneously. The collected data 
are then passed to the GPU to accelerate the neural network training. The hyperparameter setting used in this 
study is presented in Table 1.

4.2 | Scenes

We set up three scenes to verify our method: circle, hallway, and crossing (Figure 5). Those scenes were selected 
because they are regarded as benchmarks for testing motion simulation performance in many studies (Alonso-
Mora et al., 2013; Dutra et al., 2017; Godoy et al., 2015). In all scenes, a local coordinate system (centered at all 
three scenes) is used, where each agent is abstracted as a disc with radius 2.0 (similar settings can be found at 
http://gamma.cs.unc.edu/RVO2/). We define the time interval between two adjacent frames to be 0.5 s.

F I G U R E  4 Deep neural network architecture

http://gamma.cs.unc.edu/RVO2/


     |  13XU et al.

Details of the three scenes are described as follows.

•	 Circle scene (Figure 5a). The circle scene describes a scenario in which agents are initially equidistantly distrib-
uted on a circumference (Figure 5a1). The goal of each agent is to arrive at the center-symmetric side of the cir-
cle (Figure 5a2). Figure 5a presents an 8-agent case, however, we also test a 16-agent case as a comparison. The 
circle scene is a typical scene to simulate the motion of agents towards a destination position in a circle-shaped 
environment (Alonso-Mora et al., 2013; Long et al., 2018; Van den Berg et al., 2008). We set the radius of the 
circle scene as 60.0.

•	 Crossing scene (Figure 5b). Aiming to simulate the behavior of agents at a crossroads, the crossing scene has 
been widely applied in crowd simulation (Godoy et al., 2015; Ondřej et al., 2010). In our study, we divided our 
agents into two groups, respectively located below and at the left of the intersection (Figure 5b1), with 10.0 as 
the interval among agents. The goal of the group of agents located below is to cross the intersection and arrive 
at the top side of the intersection. Similarly, agents located at the left side of the intersection aim to arrive at the 
opposite side of the intersection (Figure 5b2). The extent of the scene is set to be 100.0, while the road width 
is set to be 40.0. In addition to testing the 18-agent case (with 9 agents in each group) presented in Figure 5b, 
we also test a 32-agent case with 16 agents in each group.

•	 Hallway scene (Figure 5c). The hallway scene aims to investigate a scenario where two groups of agents are 
moving towards each other (Dutra et al., 2017; Helbing, Farkas, Molnar, & Vicsek, 2002). In our study, we divide 
our agents into two groups, located respectively at the opposite sides of a hallway (Figure 5c1), with 10.0 as 
the interval among agents. The goal of each agent is to move across the hallway and eventually arrive at the 
corresponding location of the agent in the other group (Figure 5c2). In this study, we set the road width as 40.0, 
the length and width of the wall as 200.0 and 10.0, respectively. Besides testing the 18-agent case presented 
in Figure 5c, we also test a 32-agent case as a comparison.

5  | RESULTS AND DISCUSSION

In this study, we conduct analysis from two different perspectives: frame and trajectory. In frame analysis, we 
compare model performance in different frames, while in trajectory analysis, we focus on the smoothness of their 

TA B L E  1 PPO-Clip hyperparameters used in local motion simulation

Hyperparameter Value

Learning rate 3e-4

Clipping parameter (∈) 0.2

Discount (�) 0.99

GAE parameter (�) 0.95

Frames in an episode 20

Batch size 10

Number of workers 6

Speed (0.0, 2.0)

Angle (−�∕2, �∕2)

wf 5.0

wg 3.0

wc −10.0

wd 6.0



14  |     XU et al.

global trajectory. For the circle scene, an interval of 15 frames is used to present the performance of different 
models. An interval of 20 frames is used for the hallway scene and the crossing scene, because the simulating pro-
cesses for these two scenes are slightly longer. The two models to be compared are the traditional ORCA method 
(termed ORCA) and our modified ORCA method supported by DRL (termed ORCA-DRL).

5.1 | Frame analysis

5.1.1 | Circle scene

To analyze agents’ behavior in the circle scene, we present the model performance every 15 frames, from 0- to 
90-frames. We also test two cases with different numbers of agents: 8- and 16-agent cases (Figure 6). For the tra-
ditional ORCA method, in the beginning, agents are heading straight towards their destinations (center-symmetric 

F I G U R E  5  (a) Circle scene (8-agent case); (b) crossing scene (18-agent case); and (c) hallway scene (18-agent case)



     |  15XU et al.

locations from their initial locations). However, at around the 45-frame, agents are trapped in the center position 
and stop moving, in both the 8- and 16-agent cases. This is presumably due to the fact that the OCRA method only 
optimizes the current state, potentially leading to a local optimum.

In comparison, starting from the 30-frame, agents in the OCRA-DRL method no longer head directly towards 
their destinations. After a short encounter at the 45-frame, agents separate smoothly from each other without 
the permanent entanglement observed in the traditional ORCA method. Later on, agents in ORCA-DRL gradually 
arrive at their target locations.

The ability of the ORCA-DRL method to solve the entanglement at the center location results from the 
nature of DRL. ORCA-DRL agents consider the best action to maximize the reward in each state, which gives 
them the capability to avoid potential collisions in the future. In comparison, ORCA agents keep their original 
velocity at the beginning, given the local optimum, resulting in missing the best window to avoid collision in the 
circle scene. ORCA agents stop moving at about the 45-frame because the intersection of all ORCA half-plane 
solution sets of those agents is zero. The good performance in both the 8- and 16-agent cases demonstrates 
that our ORCA-DRL method successfully avoids local optima and has great generalization potential in other 
crowded cases.

5.1.2 | Hallway scene

In this scene, we showcase the performance of two models every 20 frames, starting from 0- to 120-frames. Two 
cases, the 18- and 32-agent cases, are presented in Figure 7. Although the agents in both ORCA and ORCA-DRL 
arrived at their destination before 120-frame in both cases, agents’ movement patterns from the two methods 
differ slightly at the beginning and differ greatly when two groups of agents meet. At the 20-frame, we notice 
that two groups of ORCA agents still head straight towards each other, given that this direction is determined as 
an optimal solution by ORCA at the current state. In comparison, two groups of ORCA-DRL agents shifted their 
position slightly vertically, making it easier for them to cut through the other group when the meeting of the two 
groups happened.

F I G U R E  6 Model performance in different frames in the circle scene



16  |     XU et al.

At the 60-frame, when two groups of agents meet at the center of the hallway, ORCA agents tend to exhibit 
chaotic patterns, while ORCA-DRL agents are able to maintain a relatively stable position. At the 80-frame, after 
the meeting of the two groups, ORCA-DRL agents manage to keep the initial formation, while ORCA agents at-
tempt to correct their position to return to the previous formation.

Comparing the total number of frames the two methods take for their agents to arrive at their destinations, 
in the 16-agent case, ORCA takes a total of 106 frames while ORCA-DRL takes 99 frames. In the 32-agent case, 
ORCA takes 116 frames, while ORCA-DRL takes 109 frames.

As the number of agents increases, we observe a greater chaotic pattern for ORCA agents when two groups 
of agents meet each other. ORCA-DRL agents are able to maintain their initial formation during the group meeting 
phase, leading to fewer frames for those agents to arrive at their destinations in both cases. The similar perfor-
mance of our ORCA-DRL method in both the 18- and 32-agent cases again demonstrates that our model has great 
generalization capability in the hallway scene.

5.1.3 | Crossing scene

Similar to the hallway scene, the crossing scene investigates the agents’ behavior when two groups of agents meet. 
In this scene, we present the model performance at an interval of 20 frames, from 0- to 120-frames (Figure 8). It is 
obvious that ORCA-DRL agents in both cases (18- and 32-agent cases) finish the simulation before the 120-frame, 
while several ORCA agents still need to adjust their positions after the 120-frame. In the 18-agent case, ORCA 
agents take 128 frames to arrive at their destination, while ORCA-DRL agents take 102 frames. In the 32-agent 
case, ORCA agents take 139 frames, while ORCA-DRL agents take 114 frames. The results suggest that agents in 
ORCA-DRL are more efficient as they take less time to achieve the destination compared with ORCA agents. The 
major difference in model performance can be observed at the 60-frame (group meeting phase) and the 80-frame 
(recovery phase). ORCA-DRL agents exhibit less chaos during the group meeting phase by keeping a relatively 
stable formation compared with ORCA agents. Given the chaotic behavior during the group meeting phase, ORCA 
agents need to return to the initial formation, leading to a significantly longer time (more frames) for agents to 
reach their destinations.

F I G U R E  7 Model performance in different frames in the hallway scene



     |  17XU et al.

5.2 | Trajectory analysis

In this section, we further analyze the smoothness of the trajectories of ORCA agents and ORCA-DRL agents in 
the three designed scenes. We also investigate the model generalization performance by testing the models with 
different numbers of agents.

5.2.1 | Circle scene

Figure 9 presents the trajectories of ORCA agents and ORCA-DRL agents in the circle scene in both the 8- and 
16-agent cases. We observe that ORCA agents fail to reach their destinations as they stop moving in the center 
position (Figure 9a). As mentioned in Section 3.1, the size of VOA

B
 (VO region of A in relation to B) is inversely pro-

portional to the distance between agent A and B. The further from A to B, the smaller VOA

B
, and the smaller the 

probability that A falls into VOA

B
, and vice versa. The trajectories of ORCA agents indicate that ORCA agents head 

straight to the center at the beginning because agents’ velocities are outside the VO region of other agents, and 
heading straight to the destination is clearly the optimal solution at the current stage. However, by the time ORCA 
agents start to consider collisions, the intersection of all ORCA half-plane solution sets for those agents becomes 
zero, resulting in the ceasing of movement for all ORCA agents.

Different from the behaviors of ORCA agents, ORCA-DRL agents tend to shift their headings at the beginning 
of the simulation and eventually reach their final destination without colliding with other agents, leaving a cen-
ter-symmetric overall trajectory (Figure 9b). ORCA-DRL agents, trained by the DNN via the PPO-Clip, gradually 
learned the optimal actions that need to be taken in the current state to maximize the reward. Therefore, after 
realizing that heading straight potentially results in an unsolvable dilemma, ORCA-DRL agents start to take alter-
native actions to increase the probability of positive rewards. The highly center-symmetric trajectories of ORCA-
DRL agents are due to the similar state parameters passed to the DNN. Again, the success of both the 8- and 
16-agent cases demonstrates that our ORCA-DRL method can be generalized to a more crowded case.

F I G U R E  8 Model performance in different frames in the crossing scene



18  |     XU et al.

5.2.2 | Hallway scene

The hallway scene aims to investigate the scenario where two groups of agents move in opposition, avoid colli-
sion during the meeting of groups, and eventually reach the final destinations. The performance of the models 
can be determined via the trajectory pattern. The more chaotic the trajectory pattern, the poorer the model per-
formance. Figure 10 presents the trajectories of ORCA agents (Figure 10a) and ORCA-DRL agents (Figure 10b) 
in both the 18- and 32-agent cases. In general, ORCA agents exhibit more chaotic movements, especially during 
the group meeting phase, evidenced by their intertwined trajectories. The chaotic trajectories also lead to signifi-
cantly more time for ORCA agents to reach their destinations. ORCA-DRL agents, however, are able to maintain 
their relative formation during the group meeting phase, evidenced by their smooth and untwined trajectories. 
The smooth trajectories allow ORCA-DRL agents to easily regroup after the meeting and reach their destinations 
in a shorter time (with fewer frames). As we increase the number of agents from 18 to 32, ORCA-DRL agents pre-
sent similar trajectories, suggesting a good generalization capability of the ORCA-DRL method. In comparison, 
we observe more chaotic behaviors of ORCA agents in the 32-agent case, indicating that the limitation of the 
ORCA method is exaggerated in a more crowded case. The trajectories of ORCA-DRL agents demonstrate that 
they are able to consider potential collisions earlier by conducting directional changes in advance, in contrast to 
the behavior of ORCA agents who consider potential collisions only when an agent’s velocity falls into the VO 
region.

5.2.3 | Crossing scene

Different from the hallway scene where two groups move towards each other, the crossing scene investigates 
agents’ behaviors when two groups move, merge, and disengage with their velocity perpendicular. Figure 11 
presents the trajectories of ORCA agents (Figure 11a) and ORCA-DRL agents (Figure 11b) in both the 18- and 32-
agent cases. It can be observed that both ORCA and ORCA-DRL agents adjust their positions to avoid collisions 

F I G U R E  9 Agents’ trajectories in the circle scene



     |  19XU et al.

with other surrounding agents. Similar to the results from the hallway scene, however, the trajectories from ORCA 
agents are more disorganized and intertwined (Figure 11a), suggesting more chaotic movements from ORCA 
agents during the group meeting phase compared with those from ORCA-DRL agents. As we increase the number 
of agents from 18 to 32, the movements from ORCA agents become more chaotic, evidenced by their messier 
trajectories. In comparison, ORCA-DRL agents achieve a consistent performance with smooth trajectories regard-
less of the increasing number of agents, demonstrating the great applicable potential of the ORCA-DRL method 
in more crowded cases.

F I G U R E  1 0 Agents’ trajectories in the hallway scene

F I G U R E  11 Agents’ trajectories in the crossing scene



20  |     XU et al.

6  | LIMITATIONS AND FUTURE DIREC TIONS

Although the ORCA-DRL method can generate a smoother overall trajectory than the ORCA method in local mo-
tion simulation, its limitations are worth mentioning.

Firstly, the ORCA-DRL method collects the external state using visual sensors. Therefore, the more the num-
ber of rays, the more detailed the external environment an agent can sense. However, as the number of rays 
increases, the computational complexity increases in geometric progression, leading to longer training time. To 
solve this problem, some DRL-based robot motion simulation methods utilize images collected by the robot in real 
time as input. Those images serve as the direct input of the external state to DNN for learning purposes (Wu et al., 
2019). Other studies apply simultaneous localization and mapping, a commonly used space exploration method, to 
obtain the space information of the robot (Huang & Gupta, 2008; Temeltas & Kayak, 2008). The potential of using 
directly captured images as model input deserves further investigation.

Secondly, dynamically adapting to different scenes is rather difficult for ORCA-DRL, given its offline nature 
(Godoy et al., 2015). For large-scale motion planning studies, tasks are usually divided into global path planning 
and local collision avoidance (Guy et al., 2009). In path planning, scholars have explored the potential of subdivid-
ing the global motion planning into multiple local motion simulations. That is, the ultimate goal of each agent is 
segmented into many optimal target locations (Kallmann, 2014; Van Toll et al., 2012). Further research is needed 
to subdivide the overall environment into several specific scenes, allowing DNN parameters to be automatically 
switched, depending on where each agent is located.

Thirdly, although we assume that the environment is fully known, the state information is still restricted as 
only four continuous frames are fed to the DNN model. Recently, the rapid development of the recurrent neural 
network (Dung, Komeda, & Takagi, 2008; Heess, Hunt, Lillicrap, & Silver, 2015) and 3D convolution allow the spa-
tiotemporal features of agents to be simulated (Hara, Kataoka, & Satoh, 2017; Xu, Das, & Saenko, 2017), providing 
a great opportunity to pursue fully observable Markov decision-making. In future studies, we plan to incorporate 
the aforementioned methods into our DRL-supported local motion simulation model.

Lastly, in this study, the DNN model is trained via the PPO-Clip, which has demonstrated great efficiency even 
with limited computational power. Other off-policy methods, including TD3, SAC, and DDPG, have become more 
popular recently. The potential of those methods in the proposed framework deserves further exploration.

7  | CONCLUSIONS

As one of the hot topics in multi-agent navigation, local motion simulation has attracted widespread attention in 
the past few decades due to its important role in many fields, including robotics, evacuation simulation, and virtual 
reality.

The traditional local simulation method, ORCA, can ensure collision avoidance of agents in the next frame but 
usually fails to generate reasonable behavior, evidenced by the chaotic global trajectories of simulated agents. In 
this article, we proposed a local motion simulation method integrating ORCA and DRL, referred to as the ORCA-
DRL method, where local collision avoidance detection is achieved via ORCA and trajectory smoothing is achieved 
via DRL. We designed a DNN framework to facilitate state-to-action mapping. In our designed framework, a cer-
tain state is composed of both internal and external information, which can be detected by virtual visual sensors. 
The action space further includes two continuous spaces: speed and direction. PPO-Clip, based on an AC frame-
work, is also applied to improve data utilization and speed up the training process.

We compared the performance of traditional ORCA and our proposed ORCA-DRL in three individual scenes: 
circle, hallway, and crossing. Compared with the traditional ORCA, the proposed ORCA-DRL reduces the total 
number of frames for agents to achieve their predefined destination. From a trajectory perspective, ORCA-DRL 
effectively avoids the local optimum problem by generating a smoother global trajectory compared with the 



     |  21XU et al.

traditional ORCA method. Furthermore, the model revealed a great generalization performance, indicating that 
our proposed method could be used in other scenarios or in more crowded cases. Nevertheless, ORCA-DRL has 
several limitations such as computational complexity and temporal restrictions (four frames as input). Further 
research is needed to tackle those limitations and investigate model performances in larger and more complicated 
scenes.

ORCID
Xiao Huang   https://orcid.org/0000-0002-4323-382X 
Zhenlong Li   https://orcid.org/0000-0002-8938-5466 

R E FE R E N C E S
Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P., & Siegwart, R. (2013). Optimal reciprocal collision avoidance 

for multiple non-holonomic robots. In A. Martinoli (Ed.), Distributed autonomous robotic systems (Springer Tracts in 
Advanced Robotics, Vol. 83, pp. 203–216). Berlin, Germany: Springer.

Bera, A., Kim, S., & Manocha, D. (2015). Efficient trajectory extraction and parameter learning for data-driven crowd 
simulation. In Proceedings of the 41st Graphics Interface Conference, Halifax, Nova Scotia, Canada (pp. 65–72). Toronto, 
Ontario, Canada: Canadian Information Processing Society.

Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., & Torr, P. H. (2016). Fully-convolutional Siamese networks for 
object tracking. In G. Hua, & H. Jégou (Eds.), Computer vision: ECCV 2016 Workshops, Amsterdam, The Netherlands, 
October 8–10 and 15–16, 2016, Proceedings, Part II (pp. 850–865). Berlin, Germany: Springer.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016). Openai gym. arXiv 
preprint arXiv:1606.01540.

Cova, T. J., & Johnson, J. P. (2003). A network flow model for lane-based evacuation routing. Transportation Research Part 
A: Policy & Practice, 37, 579–604.

Curtis, S., & Manocha, D. (2014). Pedestrian simulation using geometric reasoning in velocity space. In U. Weidmann, 
U. Kirsch, & M. Schreckenberg (Eds.), Pedestrian and evacuation dynamics 2012 (pp. 875–890). Cham, Switzerland: 
Springer.

Dung, L. T., Komeda, T., & Takagi, M. (2008). Reinforcement learning for POMDP using state classification. Applied 
Artificial Intelligence, 22, 761–779.

Dutra, T. B., Marques, R., Cavalcante-Neto, J. B., Vidal, C. A., & Pettré, J. (2017). Gradient-based steering for vision-based 
crowd simulation algorithms. Computer Graphics Forum, 36(2), 337–348.

Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic environments using velocity obstacles. International Journal of 
Robotics Research, 17, 760–772.

Friesz, T. L., Luque, J., Tobin, R. L., & Wie, B.-W. (1989). Dynamic network traffic assignment considered as a continuous 
time optimal control problem. Operations Research, 37, 893–901.

Fujimoto, S., van Hoof, H., & Meger, D. (2018). Addressing function approximation error in actorcritic methods. arXiv preprint 
arXiv:1802.09477.

Godoy, J. E., Karamouzas, I., Guy, S. J., & Gini, M. (2015). Adaptive learning for multi-agent navigation. In Proceedings of 
the 14th International Conference on Autonomous Agents and Multiagent Systems, Istanbul, Turkey (pp. 1577–1585). 
Liverpool, UK: IFAAMAS.

Guy, S. J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., & Dubey, P. (2009). Clearpath: Highly parallel collision 
avoidance for multi-agent simulation. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer 
Animation, New York, NY (pp. 177–187). New York, NY: ACM.

Guy, S. J., Lin, M. C., & Manocha, D. (2010). Modeling collision avoidance behavior for virtual humans. In Proceedings of 
the 9th International Conference on Autonomous Agents and Multiagent Systems, Toronto, Ontario, Canada (Vol. 2, pp. 
575–582). Liverpool, UK: IFAAMAS.

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy maximum entropy deep reinforcement 
learning with a stochastic actor. arXiv preprint arXiv:1801.01290.

Han, Y., & Liu, H. (2017). Modified social force model based on information transmission toward crowd evacuation simu-
lation. Physica A: Statistical Mechanics & Its Applications, 469, 499–509.

Hara, K., Kataoka, H., & Satoh, Y. (2017). Learning spatio-temporal features with 3D residual networks for action rec-
ognition. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy (pp. 3154–3160). 
Piscataway, NJ: IEEE.

Heess, N., Hunt, J. J., Lillicrap, T. P., & Silver, D. (2015). Memory-based control with recurrent neural networks. arXiv preprint 
arXiv:1512.04455.

https://orcid.org/0000-0002-4323-382X
https://orcid.org/0000-0002-4323-382X
https://orcid.org/0000-0002-8938-5466
https://orcid.org/0000-0002-8938-5466


22  |     XU et al.

Heess, N., Dhruva, T. B., Sriram, S., Lemmon, J., Merel, J., Wayne, G., …Riedmiller, M. (2017). Emergence of locomotion 
behaviours in rich environments. arXiv preprint arXiv:1707.02286.

Helbing, D., Farkas, I., & Vicsek, T. (2000). Simulating dynamical features of escape panic. Nature, 407, 487–490.
Helbing, D., Farkas, I. J., Molnar, P., & Vicsek, T. (2002). Simulation of pedestrian crowds in normal and evacuation situa-

tions. Pedestrian & Evacuation Dynamics, 21, 21–58.
Helbing, D., & Molnar, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51, 4282–4286.
Helbing, D., Molnár, P., Farkas, I. J., & Bolay, K. (2001). Self-organizing pedestrian movement. Environment & Planning B, 

28, 361–383.
Huang, Y., & Gupta, K. (2008). RRT-SLAM for motion planning with motion and map uncertainty for robot exploration. 

In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France (pp. 1077–
1082). Piscataway, NJ: IEEE

Irpan, A. (2018). Deep reinforcement learning doesn’t work yet. Retrieved from https://www.Alexi​rpan.com/2018/02/14/
rl-hard.html

Kallmann, M. (2014). Dynamic and robust local clearance triangulations. ACM Transactions on Graphics, 33, 161.
Karamouzas, I., & Overmars, M. (2011). Simulating and evaluating the local behavior of small pedestrian groups. IEEE 

Transactions on Visualization & Computer Graphics, 18, 394–406.
Karamouzas, I., Sohre, N., Narain, R., & Guy, S. J. (2017). Implicit crowds: Optimization integrator for robust crowd simu-

lation. ACM Transactions on Graphics, 36, 1–13.
Kim, S., Bera, A., Best, A., Chabra, R., & Manocha, D. (2016). Interactive and adaptive data-driven crowd simulation. In 

Proceedings of the 2016 IEEE Conference on Virtual Reality, Greenville, SC (pp. 29–38). Piscataway, NJ: IEEE
Kirchner, A., Nishinari, K., & Schadschneider, A. (2003). Friction effects and clogging in a cellular automaton model for 

pedestrian dynamics. Physical Review E, 67, 056122.
Konda, V. R., & Tsitsiklis, J. N. (2000). Actor-critic algorithms. In S. A. Solla, T. K. Leen, & T. K. Müller (Eds.), Advances in 

neural information processing systems (Vol. 12, pp. 1008–1014). Cambridge, MA: MIT Press.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In 

Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV (Vol. 1, pp. 
1097–1105).

Lee, J., Won, J., & Lee, J. (2018). Crowd simulation by deep reinforcement learning. In Proceedings of the 11th Annual 
International Conference on Motion, Interaction, and Games, Limassol, Cyprus (p. 2). New York, NY: ACM.

Lee, K. H., Choi, M. G., Hong, Q., & Lee, J. (2007). Group behavior from video: A data-driven approach to crowd simula-
tion. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Goslar, Germany (pp. 
109–118). New York, NY: ACM.

Li, X., Claramunt, C., & Ray, C. (2010). A grid graph-based model for the analysis of 2D indoor spaces. Computers 
Environment & Urban Systems, 34, 532–540.

Li, X., Li, Q., Xu, X., Xu, D., & Zhang, X. (2018). A novel approach to developing organized multi-speed evacuation plans. 
Transactions in GIS, 22, 1205–1220.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., …Wierstra, D. (2015). Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971.

Long, P., Fanl, T., Liao, X., Liu, W., Zhang, H., & Pan, J. (2018). Towards optimally decentralized multi-robot collision 
avoidance via deep reinforcement learning. In Proceedings of the 2018 IEEE International Conference on Robotics and 
Automation, Brisbane, Australia (pp. 6252–6259). Piscataway, NJ: IEEE.

Lopes, G. C., Ferreira, M., da Silva Simões, A., & Colombini, E. L. (2018). Intelligent control of a quadrotor with proximal 
policy optimization reinforcement learning. In Proceedings of the 2018 Latin American Robotic Symposium, Joao Pessoa, 
Brazil (pp. 503–508). Piscataway, NJ: IEEE

Lozano-Perez, T. (1990). Spatial planning: A configuration space approach. In I. J. Cox, & G. T. Wilfong (Eds.), Autonomous 
robot vehicles (pp. 259–271). Berlin, Germany: Springer.

McLurkin, J., & Demaine, E. D. (2009). A distributed boundary detection algorithm for multi-robot systems. In Proceedings 
of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO (pp. 4791–4798). 
Piscataway, NJ: IEEE.

Mehran, R., Oyama, A., & Shah, M. (2009). Abnormal crowd behavior detection using social force model. In Proceedings 
of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL (pp. 935–942). Piscataway, 
NJ: IEEE

Merchant, D. K., & Nemhauser, G. L. (1978). A model and an algorithm for the dynamic traffic assignment problems. 
Transportation Science, 12, 183–199.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., …, Hassabis, D. (2015). Human-level control 
through deep reinforcement learning. Nature, 518, 529–533.

Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., & Theraulaz, G. (2010). The walking behavior of pedestrian social 
groups and its impact on crowd dynamics. PLoS ONE, 5, e10047.

https://www.Alexirpan.com/2018/02/14/rl-hard.html
https://www.Alexirpan.com/2018/02/14/rl-hard.html


     |  23XU et al.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th 
International Conference on Machine Learning, Haifa, Israel (pp. 807–814). New York, NY: ACM.

Narain, R., Golas, A., Curtis, S., & Lin, M. C. (2009). Aggregate dynamics for dense crowd simulation. In Proceedings of ACM 
SIGGRAPH Asia 2009, Yokohama, Japan. New York, NY: ACM.

Ondřej, J., Pettré, J., Olivier, A.-H., & Donikian, S. (2010). A synthetic-vision based steering approach for crowd simula-
tion. ACM Transactions on Graphics, 29, 1–9.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., …Desmaison, A. (2019). PyTorch: An imperative style, 
high performance deep learning library. In Proceedings of the 2019 Advances in Neural Information Processing Systems 
Conference, Vancouver, BC, Canada (pp. 8024–8035). San Diego, CA: NIPS.

Peters, J., & Schaal, S. (2008). Natural actor-critic. Neurocomputing, 71, 1180–1190.
Pettré, J., Ciechomski, P. D. H., Maïm, J., Yersin, B., Laumond, J. P., & Thalmann, D. (2006). Real-time navigating crowds: 

Scalable simulation and rendering. Computer Animation & Virtual Worlds, 17, 445–455.
Pidd, M., De Silva, F., & Eglese, R. (1996). A simulation model for emergency evacuation. European Journal of Operational 

Research, 90, 413–419.
Prescott, T. J., & Mayhew, J. E. (1992). Obstacle avoidance through reinforcement learning. In J. E. Moody, S. J. Hanson, & 

R. P. Lippmann (Eds.), Advances in neural information processing systems (Vol. 4, pp. 523–540). New York, NY: Morgan 
Kaufmann.

Ramezani Dooraki, A., & Lee, D.-J. (2018). An end-to-end deep reinforcement learning-based intelligent agent capable of 
autonomous exploration in unknown environments. Sensors, 18, 3575.

Ravichandran, N. B., Yang, F., Peters, C., Lansner, A., & Herman, P. (2018). Pedestrian simulation as multi-objective rein-
forcement learning. In Proceedings of the 18th International Conference on Intelligent Virtual Agents, Sydney, Australia 
(pp. 307–312). New York, NY: ACM.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th Annual 
Conference on Computer Graphics and Interactive Techniques, Anaheim, CA (pp. 25–34). New York, NY: ACM.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.
Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-dimensional continuous control using generalized 

advantage estimation. arXiv preprint arXiv:1506.02438.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv pre-

print arXiv:1707.06347.
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., … Hassabis, D. (2017). Mastering the game 

of go without human knowledge. Nature, 550, 354–359.
Snape, J., Van den Berg, J., Guy, S. J., & Manocha, D. (2011). The hybrid reciprocal velocity obstacle. IEEE Transactions on 

Robotics, 27, 696–706.
Stadelmann, T., Amirian, M., Arabaci, I., Arnold, M., Duivesteijn, G. F., Elezi, I., … Tuggener, L. (2018). Deep learning in the 

wild. In Proceedings of the Eighth IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition, Siena, Italy.
Sutskever, I., Vinyals, O., & Le, Q. V. (2014).Sequence to sequence learning with neural networks. In Z. Ghahramani, M. 

Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Proceedings of the 27th International Conference on 
Neural Information Processing Systems, Cambridge, MA (Vol. 2, pp. 3104–3112). Cambridge, MA: MIT Press.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.
Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. (2000).Policy gradient methods for reinforcement learning with 

function approximation. In S. A. Solla, T. K. Leen, & K. Müller (Eds.), Proceedings of the 12th International Conference on 
Neural Information Processing Systems, Cambridge, MA (pp. 1057–1063). Cambridge, MA: MIT Press.

Temeltas, H., & Kayak, D. (2008). SLAM for robot navigation. IEEE Aerospace & Electronic Systems Magazine, 23, 16–19.
Tieck, J. C. V., Pogančić, M. V., Kaiser, J., Roennau, A., Gewaltig, M. O., & Dillmann, R. (2018). Learning continuous muscle 

control for a multi-joint arm by extending proximal policy optimization with a liquid state machine. In Proceedings of 
the 27th International Conference on Artificial Neural Networks, Rhodes, Greece (pp. 211–221). Lausanne, Switzerland: 
ENNS.

Torrey, L. (2010). Crowd simulation via multi-agent reinforcement learning. In Proceedings of the Sixth Artificial Intelligence 
and Interactive Digital Entertainment Conference, Palo Alto, CA. Menlo Park, CA: AAAI.

Van den Berg, J., Guy, S. J., Lin, M., & Manocha, D. (2011). Reciprocal n-body collision avoidance. In C. Pradalier, R. 
Siegwart, & G. Hirzinger (Eds.), Robotics research (Springer tracts in advanced robotics, Vol. 70, pp. 3–19). Berlin, 
Germany: Springer.

Van den Berg, J., Lin, M., & Manocha, D. (2008). Reciprocal velocity obstacles for real-time multiagent navigation. In 
Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA (pp. 1928–1935). 
Piscataway, NJ: IEEE.

Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double q-learning. In Proceedings of the 
13th AAAI Conference on Artificial Intelligence, Phoenix, AZ. Menlo Park, CA: AAAI.



24  |     XU et al.

Van Toll, W. G., Cook, A. F. IV, & Geraerts, R. (2012). A navigation mesh for dynamic environments. Computer Animation 
& Virtual Worlds, 23, 535–546.

Varas, A., Cornejo, M., Mainemer, D., Toledo, B., Rogan, J., Munoz, V., & Valdivia, J. (2007). Cellular automaton model for 
evacuation process with obstacles. Physica A: Statistical Mechanics & Its Applications, 382, 631–642.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., & de Freitas, N. (2016). Sample efficient actor-critic 
with experience replay. arXiv preprint arXiv:1611.01224.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., & De Freitas, N. (2015). Dueling network architectures for 
deep reinforcement learning. arXiv preprint arXiv:1511.06581.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine 
Learning, 8, 229–256.

Wu, K., Esfahani, M. A., Yuan, S., & Wang, H. (2019). Depth-based obstacle avoidance through deep reinforcement 
learning. In Proceedings of the 5th International Conference on Mechatronics and Robotics Engineering, Rome, Italy (pp. 
102–106). New York, NY: ACM.

Xia, C., & El Kamel, A. (2015). A reinforcement learning method of obstacle avoidance for industrial mobile vehicles in 
unknown environments using neural network.In E. Qi, J. Shen, & R. Dou (Eds.), Proceedings of the 21st International 
Conference on Industrial Engineering and Engineering Management, Paris, France (pp. 671–675). Paris, France: Atlantis 
Press.

Xu, H., Das, A., & Saenko, K. (2017). ). R-c3d: Region convolutional 3D network for temporal activity detection. In 
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy (pp. 5783–5792). Piscataway, NJ: 
IEEE.

Xu, M., Hijazi, I., Mebarki, A., Meouche, R. E., & Abune'Meh, M. (2016). Indoor guided evacuation: Tin for graph genera-
tion and crowd evacuation. Geomatics, Natural Hazards & Risk, 7, 1–10.

Yuan, W., & Tan, K. H. (2007). An evacuation model using cellular automata. Physica A: Statistical Mechanics & Its 
Applications, 384, 549–566.

Zheng, X., Zhong, T., & Liu, M. (2009). Modeling crowd evacuation of a building based on seven methodological ap-
proaches. Building & Environment, 44, 437–445.

Zheng, Y., Jia, B., Li, X.-G., & Zhu, N. (2011). Evacuation dynamics with fire spreading based on cellular automaton. Physica 
A: Statistical Mechanics & Its Applications, 390, 3147–3156.

Zhong, J., Cai, W., Luo, L., & Yin, H. (2015). Learning behavior patterns from video: A data-driven framework for agent-
based crowd modeling. In Proceedings of the 14th International Conference on Autonomous Agents and Multiagent 
Systems, Istanbul, Turkey (pp. 801–809). Liverpool, UK: IFAAMAS.

How to cite this article: Xu D, Huang X, Li Z, Li X. Local motion simulation using deep reinforcement 
learning. Transactions in GIS. 2020;00:1–24. https://doi.org/10.1111/tgis.12620

https://doi.org/10.1111/tgis.12620

